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Skid-steer friction calibration protocol
for digital twin creation

Rachel Trimble1 and Charles Fox2

1Department of Plant Sciences, University of Cambridge
2School of Computer Science, University of Lincoln

Abstract. Mobile robots require digital twins to test and learn algo-
rithms while minimising the di�culty, expense and risk of physical tri-
als. Most mobile robots use wheels, which are notoriously di�cult to
simulate accurately due to friction. Physics engines approximate com-
plex tribology using simplified models which can result in unrealistic
behaviors such as inability to turn or sliding sideways down small slopes.
Methods exist to characterise friction properties of skid steer vehicles [1]
but use has been limited because they require expensive measurement
equipment or physics models not available in common simulators. We
present a new simple protocol to obtain dynamic friction parameters
from physical four-wheeled skid-steer robots for use in the Gazebo robot
simulator using ODE (Open Dynamics Engine), assuming only that cali-
brated IMU (Inertial Measurement Unit) and odometry, and vehicle and
wheel weights and geometry are available.

1 Applicability of Friction Models in Gazebo

Coulomb friction models the typical observation that dry friction FC opposes
an external pulling force Fe up to a limit proportional (µ) to the normal force
Fn at the contact, FC = min(µFn, Fe). Fn is the reaction of the supporting
surface to the weight of the object. This is often visualised as a cone, such that
the object moves (or a wheel loses traction) when the resultant force vector is
outside the cone. In ODE this cone may be approximated by a pyramid which
is faster to compute. ODE also allows di↵erent µ values in longitudinal and
latitudinal directions, specified separately as fdir. If a vehicle does not need to
slip or skid (e.g. it has two wheel di↵erential drive and does not travel at high
speeds) then a high µ value alone would give reliable movement without slip. The
µ values control maximum friction forces which can be applied, which are rarely
needed in full, so for wheels, where friction is generally desirable, it is common
to set them to infinity or ‘any high number’ > 1. This model is not su�cient in
the case of four-wheel skid-steer robots because the wheels do not point in the
direction of motion as the robot turns and the wheels simultaneously drive and
slip.

Slip friction (FDS) models observed friction in contacts mediated by a lu-
bricating liquid or sand-like particles. Slip friction force is proportional to the
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sliding velocity, FS = vslip

k . ODE allows two separate k slip values for perpendic-
ular directions defined by fdir. Using these in longitudinal and lateral directions
is a potential mechanism for skid steer vehicles to turn and is a valid approach
for deformable surfaces such as sand, but is not realistic from vehicles on hard
surfaces because it allows a stationary vehicle to slip sideways down infinites-
imal slopes. Most robots are best programmed to avoid lubricated surfaces so
this model is not our focus.

wheel slip is a linearized approximation to the brush tyre model [2], which as-
sumes the wheels are made of stretchable tyres approximated as flexible brushes.
In this model, the slip is caused by new tyre elements hitting the road and then
deforming as the wheel turns. Hence, a non-turning wheel will not slip and a
turning wheel will slip with a slip constant is proportional to the rotation speed
(vr) of the wheel, as FW = vslip

cvr
. This allows slips for turning while preventing

stationary vehicles from slipping down slopes. wheel slip is not included in core
ODE but as a Gazebo plugin written in ODE. The plugin works by dynamically
updating the ODE slip parameter, as used statically in Slip friction (FDS) above.

2 Proposed Protocol

Contact softness First, tune the number and location of wheel-surface contacts
to give one reliable contact per wheel, using ODE parameter kp to govern the
contact ‘softness’. In ODE, friction is independent of contact area, so contacts
can be modelled as single points. If kp is too soft, the robot can get two contacts
per wheel or sink into the ground. Contacts should be in the center of the wheel,
not towards either edge: real wheels usually have a curved profile which should be
simulated; or using a very narrow simulated wheel can be a close approximation.

Coulomb parameters The limit of Coulomb friction is generally not desirable
to hit as it represents skidding out of control. This makes it di�cult to test
safely with larger robots and so an arbitrary large value such as 10 or 1000 is
appropriate for many applications. If it is really needed, options include running
the robot into a fixed object until the wheels spin and measuring the force
applied or measuring the braking distance for an emergency stop. Tables of µ
for standard surface type pairs are widely available, ranging from 0.05 (teflon-
teflon) to 1.2 (rubber-asphalt). The fdir parameter needs to be set to ensure that
the longitudinal and latitudinal parameters follow the orientation of the robot.
Pragmatically, this is most easily checked by setting one slip parameter much
larger than the other and tilting the world using the ODE gravity parameters.

wheel slip setup this ODE plugin should be enabled, with normal force 1.0.
The normal force is used as an extra multiplier to correct units but is not prac-
tically useful over and above the wheel slip constant as there is no capability
to dynamically vary the force. The integration of the plugin to the SDF file is
shown in the source code [3].
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Step size tuning If the step size is too large, the response to large di↵erences
in long-lat slip is ‘damped’. To tune step size, the lateral slip test below can be
set up in simulation and the achieved ratio measured.

Longitudinal wheel slip Initial odometric calibration should be done at the
slowest practicable speed such that the wheelslip experienced by the robot is
minimised. Subsequently, to calibrate the longitudinal wheel slip, the robot is
set to move a fixed distance (dt) at a target velocity (vr) as determined by
its odometry. The acceleration, a, experienced by the robot is measured by the
IMU to determine the force profile on the robot and the longitudinal wheelslip
parameter (clong) tuned such that the overall slip is consistent with the distance
seen by the wheel odometry. The test is proposed as a step function between a
lower start speed and a higher target speed such that numerical errors around
low velocities are minimised. As the vehicle moves straight forward, acceleration
is provided entirely by longitudinal friction of the wheels on the ground,

a =
F

m
=

4(vr � v)

clongvrm
, vr =

v

1� 4aclongm
. (1)

Acceleration can be numerically integrated to find velocity v(t) and the clong
parameter tuned by search such that

dt =

Z
v

1� 4aclongm
dt. (2)

Lateral wheel slip This test involves the robot being spun on the spot given
a constant target angular velocity !target and the achieved steady state angu-
lar velocity ! measured by counting the time taken to make n rotations. This
provides a ratio between the latitudinal and longitudinal slip parameters. Care
must be taken during the test that neither latitudinal nor longitudinal slip is in
the Coulomb region where µ is dominant. This can be back-calculated by com-
paring the slip forces against µN after the test and rerunning with a lower !t if
required. For the tested robot model, the centre of mass was coincident with the
centre of the wheelbase but a correction term would be needed if this was o↵set.

Figure 1 shows the force balance for the test. Resolving moments about the
robot centre, bFlong = lFlat,

) Flong =
b!target � b!

b!targetclong
, Flat =

l!

b!targetclat
) clat

clong
=

l2!

b2(!target � !)
. (3)

3 Validation

A Pioneer P3AT simulation with known parameters was used to generate data
using the protocol: clong = 0.005, clat = 0.05,!target = 1.0, CFM = 0, ERP =
0.2, Stepsize = 0.0001. We then attempted to recover clong, clat from the data.
The cone friction model was used as conceptually more accurate. Both directions’
µ were set to 10.
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Fig. 1: Force balance for a skid steer robot spinning on the spot.

Rotation test The ratio clat
clong

was calculated from the data by eqn. 3, as

9.998 (0.2% error). The simulation was not exactly aligned due to the finite step
size but this result shows that the model and the equations are consistent. For
physical experiments, a small range of ! would be tested to ensure the assumed
slip region linearity was plausible.

Longitudinal test target velocity of 1.0m/s and test duration 1s were used.
Torque limit was reduced to limit vehicle acceleration and prevent ‘wheelies’,
and the instantaneous accelerations and velocities calculated numerically from
reported positions. The ‘encoder’ distance was determined using the wheel an-
gular velocities and the velocity and acceleration signals calculated numerically
from 20Hz position measurements. A maximum limit for clong was determined
according to clong < 4

amaxm
(to avoid div0 errors) and bisection used to find the

matching clong. This test was repeated for a range of clong values but consistently
underestimated clong (the contacts looked ‘sti↵er’ than they were supposed to)
and plots of acceleration were very noisy. This is thought to be due to the use
of numerical di↵erentiation. This e↵ect would not be present in real life tests as
the acceleration could be measured directly with an IMU. However, the mea-
surement is fundamentally challenging because the amount of slip demonstrated
over the length of a lab floor would be expected to be small. In cases where the
measurement is not repeatable, it may be more appropriate to pick a sti↵ clong
based on IMU resolution (i.e. ‘based on these quick tests, we know the tyres are
at least this grippy’).

The validation suggests that the new protocol may work to reduce the time
currently spent by modellers performing manual search for realistic parameters.
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Traversing Visually-Similar Physically-Di↵erent

Obstacles with DeforMoBot, a Bio-Inspired

Deformable Mobile Robot
?
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Thrishantha Nanayakkara
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Abstract. Many animals have evolved to be able to change their natural
shape in order to fit through narrow gaps and spaces. This is generally
not possible with rigid robots. In this work, DeforMoBot (a deformable
mobile robot) is tested attempting to traverse obstacles of various masses
(and thus, movabilities). The robot uses a shape-adjustment algorithm so
that it can traverse obstacles rather than having to circumnavigate them.
Our results demonstrate the inverse relationship of the robot’s degree of
deformation and its ability to push against obstacles in its path.

Keywords: Biologically-inspired robots · Compliant joints and mecha-
nisms · Deformable robots · Field robots · Whisker-based navigation

1 Introduction

The embodied intelligence of robots is crucial for achieving higher performance
and enhanced capability in their environments [1,2,3]. In uncertain surround-
ings, robots regularly encounter obstacles in their desired or chosen paths. By
analysing and investigating the properties of these obstacles, robots can signif-
icantly improve their e�ciency by adapting their body shape to achieve higher
chances of success at traversing such obstacles. The ability to transform their
shape could even be critical to mission success.

Animals have evolved to show remarkable adaptability to their habitats and
other unstructured settings. Many can fit through gaps smaller than their natural
body shapes [4]. Cockroaches’ ability to navigate confined spaces inspired an
origami-style, soft, legged robot [5]. The caterpillar-inspired soft robot GoQBot
can switch between crawling and rolling [6]. A sprawl-tuned autonomous robot
(STAR) uses variable leg sprawl to traverse obstacles [7], while the Weaver robot
was augmented to adapt its walking posture to navigate in confined spaces [8].
Cats can adapt their flexible skeletons to squeeze through spaces narrower than
their resting body dimensions [9], which has inspired our own robot design.

This work examines the ability of a deformable mobile robot to traverse ob-
stacles which are visually similar but physically di↵erent. The robot can change
its shape using a tuned real-time algorithm based on proprioceptive feedback.

? This work was partly supported by EU Horizon 2020 research and innovation pro-
gramme under grant agreement 101016970 (Natural Intelligence for Robotic Moni-
toring of Habitats) and by UK Engineering and Physical Sciences Research Council
(EPSRC) DTP scholarship jointly with Analog Devices, Inc.
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Fig. 1. Comparison of the robot’s path (in red) and obstacle displacement (in blue)
from the traversal experiments. The masses of the obstacles are shown in the row
headers and the timestamps are shown in the column headers, where T = 5 s.

We utilise DeforMoBot, a bio-inspired deformable mobile robot [10]. Its shell
is composed of acrylic pieces connected together with hinges that allow the
robot to change shape from a regular hexagon to an elongated rhombus about
66% of its original width. A linear guide rail acts as the “spine” of the robot,
and spring-loaded 3D-printed “whiskers” are attached to its front tip where the
orientation of a 6 mm neodymium magnet is measured. These measurement data
are sent at a rate of 200 ms to an Arduino Uno which implements an algorithm
to determine the robot’s optimal body shape. A digital servo connected to a
2-bar linkage controls the shape of the robot. The robot navigates using motor-
driven 3D-printed rimless front wheels and passive omni-directional back wheels.
Further design specifications and details of our robot can be found in [10].

DeforMoBot aims to traverse obstacles in its path while employing a wide
body shape for stability. To achieve these objectives we implement an algorithm,
which the robot employs to progress through obstacles e�ciently, modelled as

�� = a�⌦2 + b�⌦ + c (1)
where a, b, and c are tuned coe�cients coupling the whisker angle ⌦ with the
servo angle � and desired body shape. The shape-adjustment algorithm accounts
for both the real-time whisker angle deformation and the current body shape.
Our setup is controllable; di↵erent algorithms can easily be deployed and tested.
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Table 1. Summary of Experiment Results

Obstacle Mass [g] Success Rate µs [cm] �s [cm]

0 100 % 92.50 3.15
100 100 % 93.65 2.48

10,000 95 % 79.45 8.36

µs = mean distance travelled by the robot in 5 seconds
�s = standard deviation of the mean distance, µs
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Fig. 2. Left: Mean results of the servo angle reacting to the whisker angle during
interaction with obstacles in the robot’s path. Right: Comparison of angle changes with
each obstacle, where the mean is plotted surrounded by standard deviation shading.

3 Experiments and Results

We performed experiments to observe how the robot interacts with obstacles
that have the same visual features but di↵erent masses. Two boxes (22 cm ⇥
16.5 cm⇥ 11.5 cm) were placed 24 cm apart (the narrowest robot width) 20 cm
in front of the robot. Various masses were placed inside these boxes, detailed in
Table 1. Based on the obstacle masses (and thus movabilities), the robot could
push these away, narrow its body to squeeze through, or combine these actions.

DeforMoBot completed 20 trials attempting to traverse each obstacle. The
experiment results are summarized in Table 1, where µs is the mean distance
travelled by the robot in 5 seconds and �s is the standard deviation. The robot
successfully traverses the lighter obstacles with little distance deviation. The
heavier obstacles are more challenging, with greater distance deviation.

Fig. 1 shows examples of experimental results. Visual markers track the move-
ments of the robot and the obstacles. When the robot can push away lighter
obstacles, it only slightly adjusts its body shape. Conversely, when it cannot
move the obstacles, it narrows its shape until it has successfully traversed the
obstacles at which time it can resume its natural body shape.

Fig. 2 compares how the whisker and servo angles change during interaction
with the obstacles. The shape adjustment is in real-time, apart from a widening
delay which occurs only after the robot has traversed the obstacles. The left plot
shows steeper gradients when heavier obstacles are encountered. Direct compar-
isons between the measured whisker angles and resultant servo angles are plotted
on the right. The robot only slightly deforms upon encountering the lightest ob-
stacles. Heavier obstacles result in greater deformation and higher entropy which
is represented by the greater variability in their standard deviations.
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These results show the robot’s degree of deformation is inverse to its ability
to push against obstacles in its path. These capabilities can facilitate improved
perception and proficiency of robots and allow them to navigate e�ciently and
e↵ectively, particularly in challenging and unstructured environments. Future
work will involve further design development and progression of our methods.

4 Conclusions

This work examines the deformable mobile robot DeforMoBot traversing visually
similar obstacles of various masses. By adapting its body shape when encounter-
ing obstacles, the robot can successfully traverse obstacles rather than having to
circumnavigate them. It achieves this using a real-time shape adjustment algo-
rithm which accounts for the robot’s current shape and proprioceptive whisker
feedback. The robot was assessed traversing obstacles placed apart at a distance
smaller than the robot’s normal size. It achieved 100% success rate traversing
lighter movable obstacles (slightly adjusting its body shape), 100% success rate
traversing more moderate obstacles (using a combination of shape adjustment
and pushing the obstacles), and 95% success rate traversing heavy obstacles
which cannot be moved (relying fully on its shape-changing ability). Our results
demonstrate the inverse relationship of the robot’s degree of deformation and its
ability to push against compliant obstacles in its path.
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Abstract. There is a growing need for open source hardware (OSH)
subcomponents to be evaluated. Most robotic systems are ultimately
based upon motors which are driven to move either to certain positions,
as in robot arms, or to certain velocities, as in wheeled mobile robots.
We evaluate a state of the art OSH driver, OSMC, for such systems, and
contribute new Open Source Software to control it. Our findings suggest
that OSMC is now mature enough to replace closed-source motor drivers
in medium-size robots such as agri-robots and last mile delivery vehicles.

1 Introduction

Robotics research currently struggles with reproducibility. While open source
software (OSS) such as ROS enables software reuse, this is not so for hardware,
which is proprietary and di↵ers between labs. Researchers thus waste significant
time porting software to run on their di↵erent hardware platforms. Researchers
in developing counties often cannot a↵ord the proprietary robots used by other
labs. Open source hardware (OSH) is hardware whose designs and build instruc-
tions are made public, easy, and low-cost so that anyone may build and modify,
enabling large community collaborations to grow. Fully open software and hard-
ware stacks would allow any researcher to download, build, exactly replicate,
then extend the published work which they read.

Recent ‘shallow’ definitions of OSH such as the 2020 CERN-OSH licences [4]
do not require designs to be made up of OSH subcomponents, but allow closed
source subcomponents if available on the open market. ‘Deep’ definitions such
by Open Source Ecology (OSE) [7] further restrict subcomponents, recursively,
to be all OSH, so that entire designs are open down to the level of ISO standard
nuts, bolts, resistors and transistors. ‘Deeper OSH’ has been proposed [6] as
the process of successively replacing lower level subcomponents of shallow OSH
designs with OSH alternatives, working towards deep OSH. To enable this pro-
cess, there is a need for standard subcomponents to be not only created as OSH
but also to be publicly evaluated to scientific standards. A recurring di�culty is
that while some OSH designs are created and published through academic peer-
review, others emerge from the maker community outside the academic system.
Maker designs may be of high quality but additional peer-reviewed evaluations
(sometimes known as ‘blessings’) are then needed to create specifications and/or
create trust that the specifications are met.
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Motor drivers are a common subcomponent so an important target for deeper
OSH. We here perform the evaluation of a maker community OSH motor driver,
the OSMC (Open Source Motor Controller; sic.—it is a driver not a controller),
for this purpose. OSMC is a brushed DC driver designed by hobbyists in 2001 for
use in Robot Wars style, manually remote controlled combat robots. OSMC as
been used [8] for a telecontrolled service weeding robot in outdoor environment;
in an underwater vehicle [1]; in the RoboCup Rescue challenge [2]; and in the
manual control [9] “Battle-Bot” combat robot. However these projects are not
open source hardware and do not provide evaluations of the OSMC other than
reporting its use in the larger systems. OSMC has been released as a hardware
design but does not include standard software to control it. This paper aims to
address these gaps by evaluating OSMC, and by releasing new open software to
control it, available at https://github.com/Pelex-a/osh-motor-control.

2 Methods

We evaluate OSMC for use in both ‘small-size’ (capabale of motion and informa-
tion gathering) robots such as RC cars, and ‘medium sized’ (capable of actuating
physical work) robots such as agri-robots and last-mile delivery vehicles [3].

The small-size evaluation setup is made up of the L298N driver module, a
DC motor, an incremental encoder and a means of serial port communication,
with new Arduino software for PID control as shown in fig. 1.

The medium-size evaulation uses OSMC with two example motors. The mo-
tors used were a 73ZYT-155-24-MCP4-25:1 rotary DC motor (Motion Control
Product Ltd) shown in Fig. 2 and a GLA750-P 12V DC linear actuator with
potentiometer feedback shown in Fig 3. The two main wires of the motor are
connected to the ‘MOT+’ and ‘MOT-’ leads on the OSMC driver. For direc-
tional and PWM control, AHI, BHI, ALI, BLI and Disable pins are connected
to digital pins of an Arduino board. The OSMC is then connected to the DC
power source. An external incremental encoder is connected to the Arduino. The
linear actuator has the same connection from the OSMC to the microcontroller
board. However for control, we connected the potentiometer wiper, which is one
of the three leads of the potentiometer in our linear actuator, to the analogue
pin of the Arduino board. The two other leads, the potentiometer reference, are
connected to the ground and reference voltage pin on the Arduino board.

Fig. 1: Hardware wiring
Fig. 2: Rotary setup Fig. 3: Linear setup

https://github.com/Pelex-a/osh-motor-control
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3 Results

An open-loop test was conducted to observe the system response of the small-
scale set-up by monitoring the revolution made per minute with a constant
input voltage in PWM. The system rises initially from rest and settles at a
specific RPM over time. It is noticed that the open loop system does not react
to disturbance or change in condition. For this reason, a system with feedback –
a closed system – is needed to e�ciently carry out the desired task and to ensure
the targeted value is reached.

Proportional-Integral-Derivative (PID) control is widely used in closed loop
systems. We test PID control to evaluate system performance responding to
angular position and speed requests. Videos of the tests are at https://bit.ly/
3qrC4JL and https://bit.ly/3waN9zG. They show high degrees of positional
and speed accuracy (Accuracy(%) = | set value�observed position

set value | X 100) as seen
in Tables 1 and 2. Each of the three control techniques has varying e↵ect on the
system as shown in Table 3, 4 and 5.

Table 1: Rotary performance

Set Value
(mm)

Motor Position
(mm)

Accuracy
(%)

90° 91° 98.89%
180° 182° 98.89%
270° 272° 99.23%
360° 363° 99.17%

Table 2: Linear performance

Set Value
(mm)

Actuator
Pos (mm)

Accuracy
(%)

10 7 70
25 23 92
40 39 97.5
70 68 97.1
85 83 97.6

Increasing the proportional (P) action in the control system reduces the
steady-state error. Adjusting the integral (I) constant e↵ect changes by elimi-
nating the residual steady-state error. Although, the system becomes unstable
and vibrate aggressively when set too high. Lastly, the derivative (D) action con-
trols overshooting and rise time. These recordings (https://bit.ly/3EN65HP &
https://bit.ly/3wvRv4L) shows how the system performed.

4 Discussion

The evaluation suggests that OSMC is ready for practical use in medium-size
robots such as last-mile delivery vehicles and agri-robots. We have released new
open source Arduino control software for OSMC, which now makes OSMC plug-
and-play. This enables other community members to focus next on creating,
building, and releasing new OSH robots using OSMC as a subcomponent. For ex-
ample, OSMC is now being integrated into a general purpose medium sized robot
control board [5]. Future work could extend OSMC with regenerative braking,

https://bit.ly/3qrC4JL
https://bit.ly/3qrC4JL
https://bit.ly/3waN9zG
https://bit.ly/3EN65HP
https://bit.ly/3wvRv4L
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Table 3: System Response, P

Kp Ki Kd
Rise
Time

Steady-state
error

2 0 0 - -
3 0 0 - -
5 0 0 5.2 26
8 0 0 4.1 19
10 0 0 3.7 12

Table 4: System Response, I

Kp Ki Kd
Rise
Time

Over-
shoot

Steady-state
error

10 0 0 3.7 - 12
10 2 0 3.4 - 0
10 3 0 3.2 4 0
10 4 0 2.9 11 3
10 5 0 2.8 19 5

Table 5: System Response, D

Kp Ki Kd
Rise
Time

Over-
shoot

Steady-state
error

10 4 0 2.9 11 3
10 4 2 2.85 7 1
10 4 3 2.81 5 0
10 4 4 2.77 5 3
10 4 5 2.75 3 2

as found in many closed drivers. OSMC requires some closed subcomponents –
including the Intersil H-bridge driver chip – which could be replaced with deeper
OSH alternatives. OSMC is a brushed driver, but maker OSH Brushless drivers
such as ODrive1 v3.5 (but not later versions) and OpenBLDC2 are similar in
power to OSMC and could be similarly evaulated.
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Abstract. This paper proposes a cable-based gripping device that can
be integrated into an existing parallel jaw gripper to extend its capabili-
ties. The two devices combined provide complimentary grasping modes,
respectively, for grasping small and delicate objects with little clearance
required and strong and reliable grasp of large objects. This device can
be used to simplify the deployment of robotic manipulators in Chemistry
research labs thanks to the flexibility it provides. The cable loop gripper
can grasp vials from 10 to 50 mm in diameter and when it is not needed,
the parallel jaw gripper can be operated normally. The device we present
has been tested by manipulating a variety of lab supplies.

Keywords: Robotic Gripper· Compliant Mechanism· Chemistry Au-
tomation

1 Introduction

Automation techniques can be found in the field of chemistry going back over
a century [6]. Modern automation relies on computing and complex electro-
mechanical devices to carry out any task a human could, but more e�ciently
and reliably. We are now at a point where the technology has matured enough
that, under some conditions, completely autonomous system can be used to carry
out chemistry experiments [3,5,?,4,1]. These have become more common in re-
search environments where the higher throughput of an automated system is
pivotal to complete experiments in a timely fashion. In such systems, specialised
machinery carries out tasks directly related to chemistry including but not lim-
ited to measuring, dosing, dispensing both liquids and solids as well as mixing
and many of the analytical steps. All of these systems are stand-alone cells that
accomplish their task to the standard for accuracy, precision and repeatability
required by experiments, forming a vertically-integrated, reliable system. There-
fore, a device capable of pick and place operation is a further step forward in the
e↵ort to completely automate chemistry experiments. While chemistry automa-
tion is very e↵ective, it comes at the cost of great time and resource investment



to set up due to their complexity [2]. Robotic manipulators can alleviate this is-
sue and have been used successfully for chemistry research [8], either as systems
that can move throughout an entire lab or inside a designated enclosure. They
can be employed to run the equipment and transport chemical-filled vessels to
the appropriate locations, freeing up the scientists’ time to focus on the intellec-
tual aspects of the experiment [9]. Commercial solutions, including the UniteLab
cobotic lab assistant and the Mettler-Toledo Quantos-Chronect robotic stations
for solid and liquid dispensing, are respectively available for enclosed and free-
roaming methods. Commercially available robotic arms are very adaptable and
o↵er a wide range of features, but the end-e↵ectors that are mounted on them
frequently limits the system’s potential applications. The Parallel Jaw Gripper
(PJG), are still the most popular design for end-e↵ectors [7]. They can yield near
perfect results in controlled environments, with bespoke fingers and associated
tips designed for the task, but this approach lacks the flexibility to be adopted
for di↵erent chemistry workflows because of the resources required to set the
system up properly.

(a) Control Unit
(b) Electrical connections
(c) Bowden Cable
(d) Singletact Capacitive
PDMS force sensor
(e) TPU cable loop
(f) Soft fingertip
(g) Vision Unit
(h) Passive finger
(i) Original Franka Hand fingers

Fig. 1: Control unit, Loop-O finger and Franka Hand Fingers.

2 Proposed Device

The device presented in this paper, shown in Fig.1, aims to be a plug-in upgrade
for PJGs in chemistry labs. The device consists of 3 main components: the control
unit, a finger with an embedded Cable Loop Gripper (CLG) and a second passive
finger to match the geometry of the CLG. The control unit can be mounted to
the main body of the PJG and the finger can easily replace the ones it comes
equipped with from the factory, almost all PJG allow the fingers to be swapped.
Our implementation was designed to integrated with the Franka Emika Hand,



the PJG provided with the Panda robotic manipulator, but the design can be
easily modified to account for di↵erent PJGs. The CLG works by sliding a close
loop of wire over the target object and then constricting the object against a
grasping appendage. Thanks to the working principle, this type of gripper is
inherently compliant and requires minimal control e↵ort to successfully grasp
delicate objects. The specific implementation proposed here has been designed
to handle vials. It has a payload of up to 150 grams and can grip vials between
10 and 50 mm diameter with as little as 3 mmmm clearance between vials
stored in a rack. The cable is Ninjatek TPU, a 3D printing material used to
manufacture flexible objects. This material has been chosen because it is widely
available, extremely durable while remaining flexible enough to maintain a 5
mm bending radius without plastic deformation and sti↵ enough to hold its
own weight without significant sagging while forming loops in our application’s
required range. A capacitive PDMS force sensor (d) is placed between the rubber
like (f) finger tip and the main body of the finger to provide feedback on the
grasping force as well as to act as a homing switch. The device includes a vision
module (g) consisting of a camera, time-of-flight range-finder and LEDs are
placed near the base of the finger pointing directly down at the area where the
cable loop can be deployed to provide feedback on the size of the cable, the vials
to be grasped, as well as their relative position to adjust for positional errors
during grasping. When the CLG is not required, the cable can be fully retracted
out of the way and the PJG can operate normally. The PJG can be used to grasp
vials too big for the CLG and other objects with geometries that would not work
for the CLG, like the vials’ storage trays used for ease of transportation.

3 Preliminary Testing and Conclusions

The proposed device has been tested in various pick and place tasks involving
real lab supplies. The CLG has been shown to be able to grasp and manipulate
all the labware common in chemistry laboratories that would have proved too
di�cult to grasp with traditional PJG due to their small size or tight clearances
around them when stored in trays. The CLG has been tested for reliability by
carrying out 1000 thousand pick a place tasks with vials of 3 di↵erent diameters
(15mm, 22mm, 28mm) and only 8 failures had been recorded. The PJG’s per-
formance was unaltered for the purpose of our application throughout testing
as the geometry of the fingers is unchanged, and the cable loop can fully retract
out of the way. One of the main limitation for the current design is that, when
working with small vials, it can only grasp the ones on the edge of the tray,
but this could be resolved by reducing the footprint of the finger to allow for
access in between the vials. The proposed device e↵ectively combines both the
CLG and PJG, thus eliminating the limitations of using only PJGs in chemistry
workflows.



(a) Gripper device in di↵erent
states.

(b) Grasping sequence over a 2ml
vial, as seen from the vision mod-
ule.

Fig. 2: Images from tests.
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Abstract. In contrast to mobile robots, the planning space of manip-
ulators (robot arms) is high-dimensional, which poses great challenges
for motion planning. Classical motion planning approaches face com-
putation di�culty in such scenarios, and dynamic obstacles exacerbate
the problem. We propose a Deep Reinforcement Learning (DRL) based
motion planning approach, with a Gaussian Mixture Regression (GMR)
sampling tool, to tackle this problem. Benefiting from the reduction of
training di�culty in DRL networks, the proposed architecture is e↵ective
for a long-horizon manipulation tasks in dynamic environments.

Keywords: Motion planning · Manipulators · Deep Reinforcement Learn-
ing · Gaussian Mixture Regression · Dynamic environments.

1 Introduction

Motion planning (MP) for manipulators with dynamic constraints is a challeng-
ing problem, but essential for safe human-robot collaboration (sHRC), where
robots must avoid human bodies (dynamic constraints) in real-time. Sampling-
based motion planners (SBMP) are often used for MP in high-dimensional space.
However, SBMP still faces limitations in very high-dimensional space [1], and
faces di�culty in processing dynamic environments [2] due to its high com-
putational cost. On the other hand, Deep Reinforcement Learning (DRL) has
been widely used in MP, and model-free DRL is especially powerful in unknown
environments. Unfortuantely, DRL methods face di�culty in long-horizon ma-
nipulation tasks due to the extremely large search space to explore [3], especially
when there is a sparse reward. Gaussian Mixture Models (GMM) are simple to
implement, and take uncertainty in the environment into consideration, but they
are not good at avoiding geometric constraints [4].

In this paper, we propose a hybrid MP model for manipulators in dynamic
environments with GMM/GMR (Gaussian Mixture Regression) and DRL. Con-
cretely, a GMM/GMR is trained from demonstrations of an expert in a certain
task, then it is used as an aiding tool to train a DRL model. In the training
of DRL model, the GMM/GMR is applied to bias the training of DRL, thus
reducing its searching space to help it converge.
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Fig. 1. Architecture of the Proposed Model

The advantages of this work include: (1) by the help of a trained DRL, it
can respond to a dynamic environment in real-time. (2) GMR can help train the
DRL, by reducing the search space and decreasing its training di�culties, thus
for long-horizon tasks that pose challenges in the training of DRL, our proposed
method is more powerful. (3) it can process the MP in high-dimensional space,
as DRL is well-suited to high-dimensional space.

2 Methodology

We propose a hybrid model for a long-horizon manipulator MP with dynamic
constraints, consisting of DRL and GMR. The GMM/GMR, trained by demon-
stration from humans, functions as a exploration guiding tool for the following
DRL-based MP model. The DRL-based MP model can generate motions at the
next time step based on the current state, and goal configuration. Instead of
exploring the space just by its own policy, the exploration is biased towards im-
itating the behavior of the GMM/GMR, the search space is thus reduced. The
architecture of our proposed model is shown in Figure 1.

2.1 The GMM/GMR Exploration Guiding Tool

We develop a GMM/GMR model similar to [4], which maps time to state. To
train the GMM/GMR, we first plan to collect N demonstrations from human
experts, each of which will be abstracted into T-time steps. GMM/GMR is the
mixture of several Gaussian models (Gaussian components), the equation is as
shown in [5] , for example, we have K Gaussian components, so:

P (x | ✓) =
KX

k=1

↵k�k(x | ✓k) (1)
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where ✓k refers to the mean and covariance matrix of the k-th Gaussian
component, i.e., (µk,⌃k). And �k(x | ✓k) is the k-th Gaussian component base.
x = (xi), i = 1, 2...N is the states. By introducing time t, we have:

P (x | t, k) ⇠ N (x; x̂k, ⌃̂k),

x̂k = µx,k +⌃xt,k(⌃tt,k)
�1(t� µt,k),

ˆ⌃xx,k = ⌃xx,k �⌃xt,k(⌃tt,k)
�1⌃tx,k

(2)

Through an Expectation-Maximisation (E-M) algorithm, we can train the
GMR model and finally the GMR-based exploration tool. This will be imple-
mented with the DRL-based motion planner introduced in the next subsection.

2.2 GMR-guided Soft Actor-Critic

After we get P (x|t), we begin to design the DRL-based planner. We plan to apply
the Soft Actor-Critic (SAC) model to train our DRL network, due to its strong
adaptability to continuous space and outstanding capability in convergence. To
reduce the search space, we make an improvement in the exploration process
of the SAC. Typically, the SAC agent will execute actions based on its current
policy to collect transitions from environment. Instead, we want the agent to
perform exploration with probability �1, or follow GMR with probability �2 for
the whole episode exploration at the beginning of each one, which could reduce
the search space. We make �1 and �2 dynamic, as we want the agent to follow the
GMR more often in the beginning, since at this time the GMR model is more
experienced. Whereas with the improvement of the agent’s policy, the weight
explores on its own policy more. This means that �1 will increase with training
and �2 will decrease.

We name our SAC-based planner with GMR as GMR-guided SAC (GSAC),
and after it is trained o✏ine, it can be set up for online usage, thus saving com-
putation time when used, compared with SBMP. To make it compliant with
dynamic obstacle avoidance, we need to design its reward function carefully like
in [6]. Anther concern is the ine�ciency brought by sparse reward in a high-
dimensional space. We plan to use a composition of dense rewards to provide
the agent with timely feedback in case it gets lost in the large space. A typical
approach is to give the agent a small value in every step, to query whether it is
in collision or reach the goal. And once it happens that the agent collides with
obstacles or reaches the goal, a large reward can be given as a inspiration or a
punishment. We will design our reward function based on the above considera-
tions, and make improvement to make our model better. The architecture of a
SAC is rather complicated, which consists of 4 networks, one policy network, one
state value network, and two Q networks. We will implement these four networks
and their objective functions in detail in the next steps.

We will conduct the experiments on a Franka Panda robotic arm, a robot
with 7 DOFs. The action is represented by the deviation of each joint, at = �qt.
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There should be an upper limit set on this deviation to avoid dealing damage to
the robot. To make the agent collect enough information about the environment,
we make state st = (qt, qe, dobs, dtar), where qt represents the coordinate of each
joint, qe is the position of the end-e↵ector, dobs is the distance between each link
of the robot to the obstacles and dtar is the distance of the end-e↵ector to the
target. However, the state and action space is still under evaluation and will be
further improved in the future based on the experiment results.

Our proposed work is built on the backbone of DRL-based MP in dynamic
environments, which is already verified in many past works like in [6] [7]. Based
on these works, we introduce a sampling method to enhance its performance,
thus it is plausible that our proposed model will perform well in the experiment.

3 Conclusions

In this paper, we introduced a DRL-based MP model to solve a long-horizon
manipulation task in dynamic environments, with the help of an innovative
GMM/GMR-based exploration strategy. Previous works using DRL-based model
for manipulation in dynamic environments demonstrated e↵ectiveness and thus
we can conclude that our work will be more e↵ective. We will move on to im-
prove our design and implement the experiment. Moreover, this model also has
the potential to be integrated with the ISO requirements for the sHRC.
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Abstract. Robotics research still struggles with reproducibility. The
ROS ecosystem enables reuse of software, but not hardware. Researchers
waste time porting systems between hardware platforms to reproduce
research between labs. Researchers in developing counties in particular
often cannot a↵ord the proprietary robots used by others. If a published
robotics system is dependent on any component that is only available
from a single supplier, then all work building on it is at risk if that sup-
plier vanishes, de-lists or changes the product. Open Source Hardware
(OSH, [3]) is hardware whose designs and build instructions are pub-
lic, easy, and low-cost so that anyone is free to build and modify them,
enabling large community collaborations. Combined open software and
hardware stacks allow any researcher to download, build, exactly repli-
cate, then extend the published work which they read about.
A key component of any robot is the interface between ROS and motors.
New robots often use arbitrary, messy mixtures of closed and open mo-
tor drivers and error-prone physical mountings, wiring, and connectors
to interface them. There is a need for a standardizing OSH component to
abstract this complexity, as Arduino did for interfacing to smaller com-
ponents. We present a OSH printed circuit board to solve this problem
once and for all. On the high-level side, it interfaces to Arduino Giga –
acting as an unusually large and robust shield – and thus to existing open
source ROS software stacks. On the lower-level side, it interfaces to exist-
ing emerging standard open hardware including OSH motor drivers and
relays, which can already be used to drive fully open hardware wheeled
and arm robots. This enables the creation of a family of standardized,
fully open hardware, fully reproducible, research platforms.

1 Use cases

The board is designed for use in ‘medium sized’ robots, which we define as
robots capable of usefully transporting materials and goods but not people.
Three specific demonstrator systems are used in development: OpenPodCar [2]
is a mobility scooter converted for autonomous driving. It has 24V batteries, is
steered using a linear actuator, and uses lidar for sensing and a Raspberry Pi for
ROS. Rear wheels are driven by a closed source driver from the donor vehicle
or this may be replaced with the open OSMC driver [1]. It has the highest
power requirement, drawing up to 10A-15A. OpenScout (https://github.com/
cbedio/OpenScout) is a small 4-wheeled di↵erential drive information gathering
robot. The PCB can control the wheels individually using two DHB-12 dual

https://github.com/cbedio/OpenScout
https://github.com/cbedio/OpenScout
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motor drivers connected to the DHB interfaces on the PCB. OpenAgribot is a
new ‘medium sized’ platform in development for agricultural actuation or last
mile delivery:

2 Design

The board, shown above, is designed to accommodate most typical use cases
for wheeled, tracked and arm robots, including di↵erential and Ackerman steer-
ing, open and closed loop control, and two low hardware levels of safety:

– Dead Man’s handle: means that main power goes though a single high-
quality switch connected by physical wire to a high-quality spring button
held my a human operator. If this is released for any reason, all power is
instantly cut.

– Proximity sensors: form the second level, such as the HC - SR04 ultrasonic
sensor for measuring if any object gets in the near proximity. In that case it
cuts out the power to the system as well. The board has direct connectivity
provisions to the sensor mentioned.

– Microcontroller:Arduino Giga mounts a STM32H747XI dual Arm Cortex-
M7+M4 32-bit low-power MCU. Giga has a Murata 1DX dual WiFi 802.11b/g/n
transmitting data at 65 Mbps, and Bluetooth. It also has a camera interface.
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It has 76 Digital I/O pins, of which 12 can be configured as Analog, and 12
as PWM. It has 2 on board DACs and 4 UART channels, 3 I2C channels, 2
SPI channels, CAN bus and audio jack. The CAN bus requires a transceiver
(SN65HVD230) which is accomodated on the PCB. The PCB breaks out
robust connectors for the CAN bus, I2C channels 1, 2 of the UARTs, and a
3.3V dual channel stereo DAC.

– Robust connectors:XT-60 (high-power) and JST-XH (low-power) are pro-
vided needed by practical vehicles in extreme environments, which vibrate
and dislodge weak connections such as Arduino’s duPont connectors. An
Arduino Giga is soldered into the PCB, making its own connections robust
but enabling easy reuse of the PCB between di↵erent robots.

– Power Supplies: The board is powered directly from 24V vehicle batteries.
It provides 3 high power 24V outputs and 1 low power 24V output. The high
power outputs can be used to step down the voltage and convert it to 12V and
5V using external buck converters which interface with the board’s robust
12V and 5V connectors. These supplies are each fused on-board, on the
input and output sides, using resettable, high reliability automotive grade
ATC fuses. There are 3 low power and 1 high power 12V and 5V outputs. The
board uses the 5V internally for its microcontroller. A precision referenced
3.3V supply is also provided which can supply a maximum current of 800mA
in total. The PCB is designed for a temperature rise of 28C for a maximum
current of 20A at 24V which is expected when used in OpenPodcar, the
largest demonstrator platform.

– Analog Input channels: There are 6 Analog Input channels connected to
the ADC of the Giga. These channels have a voltage divider circuit, which
can be configured using the preset, to divide the incoming voltage. This
allows a maximum input of 50V at each analog input channel. They are
using the precision referenced 3.3V generated on board thus making the
precision of readings very high and reliable, and are also zener clamped to
protect from over voltage situations. 4 out of the 6 analog input channels
have an optionally connectable jumper connection to measure the on board
voltage signals on the power supply side.

– Stepper motor channels: The board has 4 stepper motor channels which
can connect to stepper motor drivers such as Microstep M542. Stepper speed
and direction is controlled by timed signals generated by a library running
on the Giga along with a single enable signal for all 4 channels.

– Quadrature encoder input channels: The PCB also allows 4 Quadrature
encoders to be directly interfaced. Quadrature inputs with 5 pins. which have
an additional switch functionality are the ones used as a reference to design
the interface.

– BLDC motor driver interfaces: There are 4 BLDC motor driver channels
driven by a 4 channel 5V on board DAC (MCP4728). They allow individual
speed, brake and direction control of the interfaced BLDC motors separately,
with minimal noise.

– Ultrasonic proximity sensor interfaces: The board has separate 4 chan-
nels for interfacing ultrasonic sensors such as the HC - SR04 for detecting
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objects in close proximity. Using these the second additional layer of security
can be implemented as mentioned before.

– MCP23017 SO GPIO extender: It has two ports which perform di↵erent
functionalities on board the PCB. Port A controls the direction and brake
signals for the BLDC motor channels and Port B controls the 8 channels for
the relay board interface mentioned below.

– OSMC H-bridge channels: The board provides interfacing channels for
Open Source Motor Control (OSMC) drivers. This allows usability of a wide
range of motors that can be driven using these controllers from 13V-50V and
upto 160A max constant current ratings.

– DHB H-bridge interfaces: The reference used to design this interface is a
DHB-12, which is a dual motor driver H-bridge that can control two 5V-15V
motors at 30A constant current. The board has two such interfaces which
allows four more motors to be controlled separately for low-medium power.

– PCA9685PW I2C based LED controller: There are 3 units present on
board the PCB each performing a di↵erent task. The first one controls the
OSMC driver channels. The second one controls the DHB H-bridge inter-
faces. The third one controls the servo channels mentioned below.

– Servo channels: The board has the capability of interfacing 16 standard
RC servo motors. Due to this the PCB makes it possible to control anything
that uses up to 16 servo motors such as robotic arms.

– 8 channel relay board interface: This interface is used to control and
switch an 8 channel relay board and control each relay signal separately due
to the on board GPIO extender. These relay signals can be used to switch
important signals like the Dead Man’s handle relay signal or the ignition
system on the OpenPodCar.

– Mini screen display: Connectivity and mounting are provided for an op-
tional 3.5” TFT or LCD screen, useful for monitoring and diagnosing low-
level faults, such as displaying low-level power and sensor information.

Fully-automated or manual build are both enabled by the design. Its CAD
format and selected components are designed to be compatible with major pick-
and-place builders such as www.pcbway.com. This enables new users to order
an assembled PCB in just a few clicks. Alternatively, manual placing can be
performed with a solder mask. The board is designed so that some features and
components can be mounted optionally as per the use case to lower build cost.

Source files are available at https://gitlab.com/charles.fox/r4pcb
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Abstract. The integration of manipulator robots in household environ-
ments suggests a need for more predictable and human-like robot motion.
This holds especially true for wheelchair-mounted assistive robots that
can support the independence of people with paralysis. One method of
generating naturalistic motion trajectories is via the imitation of human
demonstrators. This paper explores a self-supervised imitation learning
method using an autoregressive spatio-temporal graph neural network
for an assistive drinking task. We address learning from diverse human
motion trajectory data that were captured via wearable IMU sensors
on a human arm as the action-free task demonstrations. Observed arm
motion data from several participants is used to generate natural and
functional drinking motion trajectories for a UR5e robot arm.

Keywords: Human-like Robot Motion · Self-Supervised Learning · Graph
Representation Learning · Imitation Learning.

1 Introduction

For people with motion impairments, the ability to feed oneself is a major factor
of independence [3]. Recently, wheelchair- or desk-mounted robotic manipulators
have been implemented with these tasks in mind [1, 2]. In human-robot interac-
tion (HRI), it has been observed that the human comfort and confidence may
be increased by generating predictable and naturalistic motion paths [4, 9]. As
such, we are aiming to add human-like arm motion to an assistive drinking task.

To generate human-like robot arm motion we collect human arm movement
data using wearable IMUs. We then reconstruct action-free human arm trajec-
tories to gain access to low-dimensional states, and use an autoregressive spatio-
temporal graph neural network (GNN) to ingest this data in a self-supervised
way. We learn internal model representations of human drinking dynamics that
exploit the spatial and temporal relation between arm joints based on the Space-
Time Separable Graph Convolutional Network (STS-GCN) [8]. By behaviour
cloning (BC) from the human motion data collected via IMUs, we were able to
generate diverse, human-like drinking robot arm motion that is functional across
various bottle positions with heuristics to complete other subtasks in sequence.

In this work we have adapted the STS-GCN architecture from the human
pose prediction community into an autoregressive GNN for self-supervised imi-
tation learning for robotics, with the Mean Per Joint Position Error (MPJPE)
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as the BC loss. As a result, the new system learns an internal model dynamics of
naturalistic drinking motion with relatively sparse input data, making it suited
to fewer (motion captured) demonstrations. The more compact result is also
better suited for implementation on physical hardware with predictions further
back in time making it suited to functional tasks.

Fig. 1: Human drinking motion is captured using wearable IMUs, with the arm
trajectory reconstructed to form an action-free demonstration. An autoregressive
spatio-temporal GNN learns the motion dynamics from diverse drinking data to
generate generalised naturalistic drinking motions which are scaled for a UR5e.

2 Related Work

2.1 Human-like Arm Motion Generation for Robots

It has been proposed that human-like behaviours of robotic manipulators can
ensure safety, predictability, and social acceptance [4, 9]. Many research e↵orts
have aimed for various aspects of human-like robot motion planning. One popular
approach is movement primitives that decompose motion into a set of primitives
that can be combined to generate complex movements and learned from human
demonstrations [7]. We have adopted a self-supervised learning method that can
generate diverse and generalisable human-like motion while learning an internal
model dynamics with an autoregressive structure and without primitives. It is
noted that our approach and MPs could potentially complement each other.

Human motion forecasting deals with the problem of predicting the 3D co-
ordinates of V body joints for the future K frames, given past T frames. A
skeleton-based model of human body may be used to form a graph structure,
where each joint is a node [5, 6]. In [8], the STS-GCN model is introduced, which
learns to encode the human body dynamics by factorising the spatio-temporal
graph adjacency matrix to separate spatial and temporal adjacency matrices
and focus on the joint-joint and temporal relations. We modify this architec-
ture to learn from relatively sparsely logged data by extending the model to
train autoregressively with a self-supervised loss. The result is a more compact
learned internal model of human motion dynamics that can predict much further
in time. We also take an embodied approach that maps the generated human
arm trajectory onto a real robot arm to complete functional tasks, as opposed
to visualisations of simulated skeleton models. Unlike in [8], the input trajec-
tory segment to our system is not the initial frames of a continuous action, but
rather a preparatory motion to reach and grasp a bottle prior to the generated
movement of bringing the bottle to a user’s mouth.
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3 Methods

To collect human drinking motion data, 3 MetaMotionS+ IMUs (MBientLab) are
attached using Velcro straps along the participant’s right arm on the upper arm,
forearm, and back of hand. Euler angles are logged at 100Hz and preprocessed to
address discontinuities and noise. Five participants (two female, mean age of 23.2
years) each provided 10 drinking demonstrations for 6 discrete bottle positions
on a 2-by-3 grid on a desk. Each recorded trajectory is discretely down-sampled
to 150 samples and split into reaching, drinking and returning phases in Fig. 1.

The GNN is shown in Fig. 2. The encoder has four STS-GCN layers with
the input graph of T = 30, which learns the adjacency matrix of the input to
highlight certain space-time edges with feature graphs. The decoder has five TCN
layers to generate the output graph of K = 30 with 3D joint coordinates. The
learned graph representations act as the internal model for the drinking dynamics
to generate the subsequent motion segment given the input segment. The model
is trained to minimise the MPJPE loss in Eq. 1 between the autoregressively
generated 120-frame drinking trajectory and the ground-truth self-supervised
label. This requires a recursive forwarding of its output to its input four times.

L =
1

V K

T+KX

k=T+1

VX

v=1

kx̂vk � xvkk2 (1)

xvk, x̂vk 2 R3 are the true and predicted joint v positions at frame k. V is the
number of nodes per frame. T and K are the number of input and output frames.

As the generated human trajectory resides in the human workspace, we map
and linearly scale the human wrist 3D trajectory to the robot arm’s end-e↵ector
(EE) workspace, safely reaching the user’s mouth. Future work would integrate
sensing solutions to deal with the user moving and force-interactions.

Fig. 2: An overview of the autoregressive GNN adapted from the STS-GCN.

4 Results

A 6 DOF UR5e robot arm was used with a parallel jaw gripper adapted from
the ROBOTIS Open-Manipulator X robot, Fig. 1. In Fig. 3 we compare the
GNN trajectory with a typical joint-space IK trajectory. Pronounced curves
with hysteresis are present in the GNN trajectory. Such hysteresis also appears
in human reaching motions [9]. We also test our trained model on unseen test
bottle positions placed within the aforementioned 2-by-3 grid of bottle positions.
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(a) GNN trajectory. (b) Joint-space trajectory.

Fig. 3: A comparison between a drinking trajectory generated by the GNN (a)
and by joint-space inverse kinematic interpolation with trapezoidal velocity pro-
file. (b) Note that a classic task space IK trajectory would be a straight line.

5 Conclusion and Future work
We have proposed a preliminary GNN-based self-supervised imitation learning
framework, using human demos to generate human-like robot arm drinking mo-
tion from a reach-to-grab motion. In future work, this could be extended by
multi-task learning and with a camera to observe scene obstacles for more Ac-
tivities of Daily Living where human-like motion is beneficial for assistive robots.

References

1. Beaudoin, M., Lettre, J., Routhier, F., Archambault, P.S., Lemay, M., Gélinas, I.:
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Abstract. This work proposes a planning approach for advanced motions in
hexapod robots. Contact sequences are explored until a user-defined planning
horizon is reached. The contact change leading to the best position on the horizon
is executed, and exploration resumes. In preliminary simulations, the algorithm
consistently returned paths requiring at least 20% fewer contact changes than the
state-of-the-art. Our algorithm generated 48.0% fewer nodes than the state-of-
the-art in one terrain and 0.5% more in another, leading future work to examine
the effects of specific environmental features on the number of nodes generated.

Keywords: Contact Planning · Legged Motion Planning · Hexapod Robots.

1 Introduction

Legged robots present unique challenges for motion planning, given their high degrees
of freedom, under-actuation, and the need to maintain balance [5]. While gaited walking
methods suffice in many cases [4], environments such as that shown in Fig. 1 require
robots to plan and execute advanced forms of motion in order to navigate.

To plan such motions, legged robots must identify where they will make contact
with the environment and the sequence in which contacts are made or broken. This work
proposes a novel contact planning algorithm incorporating receding horizon methods to
plan advanced hexapod motions. The planner is tested against state-of-the-art using a
simulation of the Corin hexapod [1].

2 Planning Algorithm

Our Receding Horizon Contact Planning (RHCP) algorithm is based on the Contacts
Very Best First Planning (CVBFP) approach of Escande et al. and shares several fea-
tures in common with it, including the same potential field, guide path, and posture
generator (PG) [3]. A flowchart summarising RHCP is shown in Fig. 2. The planner
uses a tree search to explore possible stance sequences, where a “stance” refers to a set
? This work was supported by a grant from the University of Manchester.
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Fig. 1: An example of an environment requiring advanced motions to navigate. In this
case, chimney walking (left) and wall walking (right) [2]
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Fig. 2: Flowchart showing the operation of the RHCP algorithm. Elements present in
RHCP but not in CVBFP are shown in blue.

of contacts made simultaneously, an example of which is shown in Fig. 3. Each node in
the search is associated with a stance and a transition configuration that allows the robot
to move into that stance from the previous stance. When these transition configurations
exist, they are found by the PG, shown in Fig. 2.

RHCP explores possible stance sequences until a user-defined maximum sequence
length kmax is reached. As these sequences always begin from the robot’s current stance,
the planning horizon effectively recedes each time the robot moves and its stance changes.
The planning process starts with the root node n0 being expanded, generating child
nodes as follows:

– one child node is generated for each foot in contact in n0 that could be lifted;
– for each foot not in contact in n0, one child node is generated with that foot placed

on each surface within reach at a point chosen by the PG.

Each child node of n0 is then expanded, producing a 2nd generation of children. This
process repeats until kmax generations have been produced. The kmax generation node
with the lowest potential U(q) is found, and the first contact change in the sequence
leading to that node is executed. The planning process repeats with the robot’s new
position replacing n0 as the root node. This continues until the goal is reached.

3 Preliminary Results

RHCP (with kmax = 2) and CVBFP were each used five times to plan a path for the
Corin hexapod across a section of rough terrain, as well as a more basic environment
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Fig. 3: Example of a stance with its con-
stituent contacts labelled.

Fig. 4: Basic (top) and Rough (bottom)
environments used for preliminary test-
ing. Corin is shown in its starting config-
uration, and the goal region is shown in
red.

without obstacles (shown in Fig 4). The testing results are summarised in Table 1. Two
tests were cancelled (one of CVBFP in the basic environment one of RHCP in the rough
environment) after they generated over 6000 PG calls without completion. These tests
are excluded from Table 1 results.

Table 1: Planning data for CVBFP and RHCP in environments tested.
Environment Algorithm Calls to

PG
Nodes Distance

Covered (m)
Contact
Changes

Basic (no obstacles) CVBFP 931 700 1.46 34
RHCP 484 342 1.50 27

Rough (with obstacles) CVBFP 2726 1392 2.25 55
RHCP 2741 1350 2.16 30

As shown in Table 1, the average number of PG calls in the rough environment was
just 0.5% higher for RHCP than for CVBFP. In the basic environment, however, RHCP
made an average of 48.0% fewer calls to the PG than CVBFP.

Fig. 5 shows a plot of the potential of the nodes generated during the CVBFP tests
in the basic environment. It can be seen on the graph that the average potential plateaus
for several independent tests at a value of approximately 250. As this plateau is not
observed in the RHCP tests on the basic environment, we believe that this is the prin-
cipal reason RHCP made fewer PG calls than CVBFP. This is also believed to be why
the two tests excluded from the results in Table 1 failed to conclude. We hypothesise
that this plateau occurs because the robot has reached a state in which a foot that is
critical for balance must be lifted to progress. An example of such a configuration is
shown in Fig. 6. Future work will aim to confirm this hypothesis and understand what
environmental features cause the algorithms to encounter this problem.

Table 1 also shows that the paths generated by RHCP required fewer contact changes
than those generated by CVBFP, requiring 21.2% and 45.2% fewer in the basic and
rough environments, respectively.
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ated by the RHCP tests (dashed lines) and
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vironment.

Robot 
Motion

Fig. 6: Example configuration generated
during planning plateau encountered by
CVBFP in the basic environment. In the
configuration shown, the robot must lift
its right hind leg to progress, but doing so
would cause it to tip backwards.

4 Conclusions

This work presented a novel receding horizon contact planner. In preliminary tests,
the paths generated by RHCP required at least 20% fewer contact changes on average
than those by CVBFP. Additionally, RHCP generated 48.0% fewer nodes than CVBFP
in the basic environment while generating only 0.5% more nodes than CVBFP in the
rough environment. Understanding which environmental features cause performance
problems in the two algorithms is the subject of ongoing work.
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Abstract. In this extended abstract we demonstrate that within-grasp
object localisation and size estimation can be achieved without tactile
sensors, using only a simple 3DOF robotic manipulator and propriocep-
tive sensing from inexpensive actuators. A geometry-based algorithm is
used, based on 4-bar linkage kinematics, modified to match the structure
of our gripper when holding a convex object, such as a cube.

1 INTRODUCTION

In robotics, the ability to determine object and grasp properties by touch has
been investigated for many years. More recently, it has been demonstrated that
in-hand-manipulation (IHM) can be used to enhance tactile data collection, by
exposing more of an object’s surface to tactile sensor surfaces [2, 5]. The potential
for tactile object identification without tactile sensors was explored in [4], where
time series actuator position and current was reduced to several key points and
fed to a classification algorithm. In this work we go beyond object classification
and aim to estimate physical parameters of an object’s size and pose within the
gripper. Our method estimates object location and size based on a kinematic
representation of the hand-object model as a four-bar linkage whose parameters
can be estimated using the Freudenstein equation [1].

2 IMPLEMENTATION

2.1 Gripper

To focus on the algorithmic challenges of the in-hand proprioception problem,
we focus our efforts on planar manipulation. We make use of a new gripper in
this work, called the MinE-TRoll, which is a miniature and simplified version of
the open-source E-TRoll (Extended-Tactile Rolling) gripper of [5].

The gripper consists of two rigid fingers with a single revolute joint at the
base of each. The two revolute joints are mounted on a prismatic dual-rack-and-
pinion joint, which enables their linear separation to be adjusted.

Two types of manipulation are used to gather proprioceptive data about
the held object. These are a fixed-base rolling manipulation (previously used
in [4, 2, 3]) and a new manipulation strategy which we call ‘palm-pivot’. These
manipulations are executed by the gripper sequentially, following an initial grasp
(Fig 1).



2 C. Dowds et al.

Fig. 1. The 3 in-hand-manipulations undertaken by the MinE-Troll gripper.

2.2 Kinematic Model and Parameter Solver

The relationship between the MinE-TRoll fingers and an object can be kinemati-
cally modelled as a four-bar linkage mechanical system with parameters as shown
in Fig 2. The palm width aperture is represented by a, and c is the estimated
object size. Angles  and � represent the angles, and b and d the distances, from
the centre of the finger joints to the object contact points. The relationship 1
between the parameters is derived from Freudenstein’s Equations [1].

R1 cos(�)�R2 cos( ) +R3 � cos(��  ) = 0 (1)

where,

A = (1+R1) cos(�)+R2+R3, B = �2 sin(�), C = (R1�1) cos(�)�R2+R3 (2)

R1 =
a

d
,R2 =

a

b
,R3 =

a2 + b2 � c2 + d2

2bd
(3)

Fig. 2. The relationship between the fingers and object may be represented by a four-
bar mechanism, assuming point contacts.
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Fig. 3. Object size estimation error for different manipulations and object sizes with
symmetrical initial contact points. Note that a legend would not fit on this plot but is
the same as in Fig 4.
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Fig. 4. Left finger contact point estimation error with symmetrical initial contact
points.

Due to the offset w caused by the width of the finger, there is no direct
measurement of angles � and  . The measured joint angles ✓l and ✓r are related
to � and  by equation 4.

� = ✓l + arcsin(w/b)  = ✓r � arcsin(w/d) (4)

Observations of a, ✓l and ✓r (from the actuator encoders) during IHM are
substituted into the above equations to form a vector of nonlinear functions with
each component in the form fi(ai, ✓li , ✓ri , b, c, d) = 0. MATLABs nonlinear least
squares solver was used to find a set of parameters b,c,d which minimise the sum
of squares of the component residuals. These parameters are optimal estimations
of the contact point locations and proximity.

3 RESULTS

The manipulation test procedure involved two sequential phases of motion, a
±15mm palm-pivot manipulation followed by a ±10� rolling manipulation. Pa-
rameter estimation was performed using data from each phase of the manipula-
tion separately and combined.

Figure 3 shows the absolute error for object size estimation for different
(symmetrical) initial contact positions on the fingers and object sizes. Figure 4
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shows the absolute error for contact points estimation on the left finger (the
plot for the right finger is not shown but is very similar). The results shown
also consider the different manipulation strategy used to generate the data, red
colors represent palm-pivot actions, green series represent rolling actions, and
blue colors represent the combined estimation considering both actions. Better
size estimation is achieved for the combined pivoting and rolling data rather than
either individually. Size estimation error with combined data is less than ±1mm.
Position estimation is unacceptable with rolling data alone, with combined data
giving marginal improvements over pivoting alone. Position estimation error with
the combined data is approximately ±5mm.

4 CONCLUSION AND FUTURE WORK

This work has introduced a kinematic model based parameter estimation algo-
rithm that uses only actuator encoder data to reconstruct the physical properties
of an object being manipulated. We demonstrate the approach on practical data
collected from the MinE-TRoll, a custom-built and inexpensive 3DOF robotic
gripper. The 3D-printed nature of the gripper, inexpensive actuators (Dynamixel
XC330-T288-T) and slipping of objects against the fingers introduces various
forms of noise and positioning error. Despite this our algorithm performs well,
giving object size estimation error within 5% of an object’s size.

Key to exploiting the algorithm is the use of multiple In-Hand-Manipulation
actions during data collections. It was demonstrated that combining typical
rolling manipulation with a new palm-pivot action greatly reduces size and posi-
tion prediction error. This pivoting action is made possible by the variable width
palm of the MinE-TRoll robotic gripper. In future work we will investigate the
effect of varying palm width also for rolling motions, to keep the fingers parallel
during this action, as in [5]. We also plan to expand the objects under exam-
ination to include those with curved and irregular cross-sections. Finally, the
relationship between object starting position and overall accuracy may also be
further studied, as this parameter is bound to vary in practical applications.
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Abstract. Obtaining key information about a malicious UAV such as
position and the vehicle type is vital to protect the airspace around crit-
ical infrastructure. Radar o↵ers a means of obtaining this information,
with each UAV presenting a unique micro-Doppler signature caused by
propeller rotation and airframe vibration. This paper outlines a system
for detecting and clasifying UAVs and giving an indication of payload.

Keywords: UAV · Radar · UAV Detection · Micro-Doppler · CNN

1 Introduction

With the rise of ever smaller and a↵ordable system-on-chip (SOC) components,
Unmaneed Aerial Vehicles (UAVs) have become increasingly accessible, with
predicted sales in the US going from 600,000 in 2016 to 2.7 million in 20201.
Combating this growing threat has led to the development and research of UAV
detection and elimination, with commercial systems often deployed at critical
infrastructure e.g. the Elvira 360° System [1]. Despite this, much critical infras-
tructure still goes unprotected [2], especially in remote sits, largely due to the
impractical cost of deploying these commercial systems at the necessary scale.

2 System Concept and design

Figure 1 shows a concept of operations diagram with multiple radar detector sys-
tems in place around critical infrastructure, each capable of scanning the airspace
within their vicinity. Research has proven the e↵ectiveness of classification using
the radar returns received from UAVs using deep learning methods [3–5]. As a
result of automated classification, information regarding the detected UAV type
and size can also be provided to the user.

The final system is shown in Figure 2 that shows all hardware used, with
this all interacting as seen in the functional architecture in Figure 3.

1 https://www.faa.gov/newsroom/faa-releases-2016-2036-aerospace-forecast?
newsId=85227
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Fig. 1: Concept of Operation of the UAV Detector

Fig. 2: Final System Fig. 3: System Architecture

2.1 UAV Classification

A breakdown of the Target Classification process involved to classify the UAV
is shown in Figure 4. This uses a spectrogram derived from the radar sensor,
an example of a spectrogram for a DJI Phantom is shown in Figure 5. The
vibrations in the spectrogram are produced by both the baldes and the body.
Drone design and selection of motor speed, propellor size and pitch is cloesly
related to the payload capacity [6].

3 Methodology, Results and Discussion

Four di↵erent UAVs (5-inch racing drone, Parrot Ar.Drone, DJI Phantom 4 and
DJI Inspire 1) are used to train the deep learning model in addition to a “no
drone” class. This data was generated in a flying lab at the University of She�eld.
Training took place at a range of di↵erent ranges, and validation models were
compared using representative data sets across di↵erent ranges of the sensor.

A model has then been trained on the two extremes of the range data gath-
ered, 0 - 4, and 7 - 11 m. When compared to the model trained against all ranges,
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Fig. 4: Classification Process using a spectro-
gram created form Short-Time Fourier Trans-
form (STFT) of radar returns

Fig. 5: DJI Phantom
Spectrogram

Ranges Trained Ranges Validated Training Validation

0 - 4 m 0 - 4 m 100% 96.43%
0 - 4 m 0 - 4 m, 3 - 7 m, 7 - 11 m 100% 65.49%

0 - 4 m, 3 - 7 m, 7 - 11 m 0 - 4 m, 3 - 7 m, 7 - 11 m 97.22% 89.28%
0 - 4 m, 7 - 11 m 0 - 4 m, 3 - 7 m, 7 - 11 m 98.65% 87.52%

Table 1: E↵ects of Range used for Training and Validation on Model Accuracy

the model validated only at the extremes of UAV range su↵ers less than a 2%
drop in accuracy (Figure 6. Therefore, the majority of features used to classify
the spectrograms can be extracted without training on the data obtained at the
middle 3 - 7 m range, as shown in Table 1.

4 Conclusions

A prototype system has been constructed, with custom software and algorithms
implemented. Tracking of UAVs is performed by a proportional controller using
target data obtained from the onboard signal processing of the K-LD7. This
allows the positional information of the UAV relative to the radar to be acquired.

Meanwhile classification is performed by a CNN based on previously suc-
cessful models from research. This CNN has been trained on a custom dataset
generated on from real UAVs at varying ranges, with the impact investigated.
Producing a model with good classification accuracy over multiple ranges is
necessary in a real system due to the unpredictable nature and flight path of
unauthorized UAV flights. The final model is capable of classifying UAVs at
ranges of 0 - 11 m with an accuracy of 89.28% at 1 Hz. The sensor selected for
this project operated over a short range (maximum distance 15m for a person).
This paper details the process for using the sensor for detection and classification
of UAVs, this can be extended to compatible longer range sensors.
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Fig. 6: Confusion matrices showing individual class prediction accuracy for mod-
els trained and validated against data gathered at di↵erent ranges.
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Abstract. We describe a work-in-progress approach to solving the prob-
lem of robot navigation in dynamically changing, social environments.
Our approach employs reinforcement learning informed by a continually
updated model that predicts the evolution of the environment, and han-
dles two common scenarios: (1) a person moving within the environment,
and (2) static obstacles with positions that change over time. We assess
the effectiveness of the approach in a simulated assistive-care applica-
tion in which a mobile robot supports a person with mild cognitive or
physical impairments with simple everyday tasks.

Keywords: Reinforcement Learning · Navigation · Self-Adaptive Sys-
tems · Assistive-Care Robots.

1 Introduction

Autonomous robots have been increasingly deployed alongside humans, operat-
ing in complex environments and in various domains such as assistive-care [5],
manufacturing [14], and nuclear fusion [3], among others. Assistive-care robots [4]
are emerging as a vital tool for providing care and support to the elderly in their
homes [6]. These robots are designed to perform tasks that include retrieving
objects, aiding in mobility, monitoring health metrics, and offering medication
reminders [15].

Machine learning (ML) algorithms have enabled a personalized assistance
offered by these robots through their adaptation to the different challenges and
preferences of users [10], fostering a higher level of independence for older adults.
However, an important challenge still largely unaddressed is ensuring lifelong
performance of ML (i.e., the ability to adapt to changes during long-term as-
sistance) in assistive robotics for elderly care [9]. Navigating in complex and
constantly changing environments presents potential hazards to human-robot in-
teractions. For instance, an unexpected collision between the robot and a human
could lead to the person falling. Thus, ensuring that assistive-care robots main-
tain a high-level of effectiveness and adaptability during long-term assistance is
of utmost importance. This includes the ability to avoid collisions with humans
moving within the environment and obstacles whose positions may change from
? Supported by Assuring Autonomy International Programme.
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Fig. 1. View of a large open plan kitchen area in Gazebo3 simulation environment.

time to time (e.g., furniture). Moreover, by achieving lifelong performance, the
robots can provide consistent service to people with mild cognitive and/or motor
impairments whose condition may evolve over time, resulting, for instance, in
changes in movement patterns (erratic trajectories, speed variation, etc.).

In this work-in-progress study, we aim to enhance the navigation capabili-
ties of a robot within a dynamic environment where human paths and object
locations change over time. Solving this problem presents challenges, such as
anticipating human trajectories, and proactively adapting to changing environ-
mental conditions before undesirable situations are given (e.g., those that entail
a high risk of collision with people and objects). To overcome these challenges,
we propose an approach that employs reinforcement learning to endow a robot
with the ability to reach a target location within the environment while avoiding
collisions both with static and dynamic obstacles.

2 Navigation in Dynamic Environments

Figure 1 depicts the environment that we employed to evaluate our approach,
which corresponds to a large open plan kitchen area with various static obsta-
cles, such as chairs and tables. In a healthcare assistance scenario, the trajec-
tories of human movement can often be unpredictable (e.g., erratic trajectories

3
https://gazebosim.org/home

https://gazebosim.org/home
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Fig. 2. MAPE-K Loop via Reinforcement Learning.

derived from cognitive and motor impairments) and static obstacles may fre-
quently change location due to situations such as a patient forgetting to return
items to their original locations. The co-existence of these two factors can pose
challenges for existing navigation algorithms to handle effectively. A human par-
ticipant serves as a moving obstacle, with changing motion patterns (walking
speed, direction) to which the robot has to adapt at runtime in order to reach
the goal position while avoiding collisions. To simulate cluttered environments
commonly found in elderly care settings, the position of static obstacles, such as
chairs, changes over time, mimicking real-world scenarios where a person may
leave clothing on the ground or rearrange the furniture from time to time.

3 Overview of the Approach

Our approach employs MAPE-K [7], which is regarded as one of the most success-
ful paradigms to build autonomic and self-adaptive systems. MAPE-K consists
of four stages arranged in a feedback loop (Monitor, Analyse, Plan, Execute) and
a Knowledge base. As illustrated in Figure 2, the MAPE-K loop in our approach
is supported by a reinforcement learning framework, which is incorporated in
the software running in the robot. The Monitor stage focuses on gathering world
data, which includes the robot’s distance to obstacles and the coordinates of
the human in the environment, and incorporates it into the World model. Si-
multaneously, the world observations are incorporated into the History model,
which is tasked with preserving past observations to be consumed by the Predic-

tor component. The Predictor component is integrated into the loop to predict
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the human state within a short time horizon, including its trajectory. World
data about current state obtained from the World model, along with predictions
from the Predictor component, serve as inputs to the Decision Making reinforce-
ment learning (RL) component. These inputs include the distance to obstacles,
target location information, values from the action space, and predicted human
coordinates. Subsequently, the set of actions generated as output by the RL com-
ponent are set for execution. In our instantiation of MAPE-K, the Analyse and
Plan stages are unified into a single stage supported by the tandem operation of
the Decision Making and Predictor components.

4 Related Work

Significant research has been conducted on robot navigation and path predic-
tion in various environments. The study in [8] examines a robot’s ability to
navigate among humans in a manner that adheres to social norms and ensures
safety. However, it does not account for changes in the position of static ob-
stacles over time, and the performance diminishes with increasing map size.
A path planning approach, introduced in [11], identifies paths in either static
or dynamic cluttered environments, but is primarily applied within a grid-based
model framework without real-world scenarios. The use of occupancy values from
presampled trajectories as part of the observation space is highlighted in [1] as
an effective way to reduce training time for human path prediction. The au-
thors plan to adjust their reward function for more complex obstacle scenarios.
A hybrid online planning approach for navigation in hospital-like settings is pre-
sented in [13], with plans to further develop this approach by incorporating a
learning-based strategy. While previous research on navigation in dynamic en-
vironments is often focused on adapting to dynamic obstacles such as humans,
it frequently overlooks changes in static obstacle locations and the prediction of
human paths, which are crucial for maintaining safety in scenarios with potential
erratic human behaviour due to mild cognitive and motor impairments.

5 Conclusion

In this paper, we present a method for lifelong navigation based on a dynamic
and cluttered environment. Within the framework of a self-adaptive system, the
navigation task is formulated as a reinforcement learning process. In such a
way, the robot acquires the ability to navigate towards a designated goal while
avoiding both moving humans and obstacles that change position over long time.

In future work, we aim at enhancing the method’s ability to predict hu-
man movement paths at runtime, provide safety guarantees (e.g., minimising
probability of collisions against obstacles) by complementing RL with quanti-
tative verification techniques [2,12], and explicitly considering trade-offs among
multiple qualities (e.g., level of disruption to the human vs. usefulness in task as-
sistance). We also plan to broaden the range of scenarios to assess the generality
of our approach and evaluate how it performs under a diverse set of situations.
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Abstract. While reinforcement learning algorithms have had great suc-
cess in the field of autonomous navigation, they cannot be straightfor-
wardly applied to the real autonomous systems without considering the
safety constraints. The later are crucial to avoid unsafe behaviors of the
autonomous vehicle on the road. To highlight the importance of these
constraints, in this study, we compare two learnable navigation policies:
safe and unsafe. The safe policy takes the constraints into account, while
the other does not. We show that the safe policy is able to generate tra-
jectories with more clearance (distance to the obstacles) and makes less
collisions while training without sacrificing the overall performance.

Keywords: Autonomous Navigation · Reinforcement Learning · Safety
Constraints.

1 Introduction

Deep Reinforcement Learning has demonstrated tremendous success in many

high-dimensional control problems, including autonomous navigation. Within

RL, the interaction of the agent with the environment is modeled as a Markov

decision process (MDP) [1], where the goal is to optimize the expected cumu-

lative reward. The agent in MDP has a big freedom to explore any behavior

which could improve its performance, including those that might cause damage.

To this end, it is crucial to ensure safety constraints. A well-known approach

to consider safety constraints in RL is a Constrained Markov Decision Process

(CMDP) [2]. A survey of methods for solving CMDP can be found in [3]. In this

short paper, we will apply safety constraints to ensure the safe behavior of the

autonomous vehicle. Particularly, we will use the Lagrangian method [4] that is

one of the most widely used approaches for solving CMDP.

2 Problem Statement

We are interested in algorithms for autonomous navigation which provide certain

safety guarantees. To this end, we model our problem as a CMDP, where the
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agent (autonomous vehicle) must generate a sequence of actions (trajectory)

that drives it to a goal while avoiding obstacles and ensuring a tolerable safety

cost limit. The latter in our work is interpreted as an upper limit of the vehicle’s

velocity when it is moving near to the obstacles.

Trajectory generation We are interested in autonomous vehicles whose

dynamics is described as [5]: ẋ = vcos(✓), ẏ = vsin(✓), ✓̇ = v
L tan(�), where x,y

are the coordinates of the vehicle’s rear axle, ✓ is the orientation, L is the wheel-

base, v is the linear velocity, � is the steering angle. The former three variables

comprise the state vector: x(t) = (x, y, ✓). The latter two variables form the

control vector: u(t) = (v, �), which can also be re-written using the acceleration

a and the rotation rate ! as follows: v = v0 + a · t, � = �0 + ! · t.
The robot is operating in the 2D workspace populated with static obstacles.

Their shapes are rectangular (as the one of the robot). Let Obs denote the set

of obstacles. Denote by Xfree all the configurations of the robot which are not

in collision with the obstacles. The problem is to find the actions that move

the vehicle from its start configuration sstart to the goal one sgoal, s.t. that the

kinodynamic constraints are met and the resultant trajectory lies in Xfree. These

controls are generated using a sequential decision making based on CMDP.

Constrained Markov Decision Process Formally, CMDP can be repre-

sented as a tuple (S,A,P,R, C, d, �), where S is the state space, A is the action

space, P is the state-transition model, R is the reward function, C is a constraint

cost function and � is the discounting factor. During learning at each time step

the agent being in a state st 2 S takes an action at 2 A and receives a reward

rt 2 R and a cost ct 2 C. The goal is to learn a policy, i.e. the mapping from the

states to the distributions of actions, ⇡ : S ! P (A). The policy should maximize

the expected return J(⇡) from the start state st while satisfying the discounted

cost with tolerable limit di trough the discounted cost C(⇡) under policy ⇡:

J(⇡) = E⌧⇠⇡[
TX

i=0

�
t
r(st, at, st+1)], C(⇡) = E⌧⇠⇡[

TX

t=0

�
t
ci(st, at, st+1)],

where ⌧ = (s0, a0, s1, a1, . . .) denotes a trajectory. The objective of CMDP for

the policy ⇡ is to find: ⇡
⇤ = argmax⇡2⇧ J(⇡), s.t. Ci(⇡)  di.

3 Method

To evaluate the influence of safety constraints, we will use a policy-gradient algo-

rithm PPO [6] and its safe version – LagrangianPPO (LPPO) [4]. The learning

and evaluation of these two algorithms are conducted in a gym environment from

[7]. Next, we will briefly introduce some details of environment.

Environment Our environment provides an autonomous vehicle equipped

with kinematic bicycle model and lidar-sensor in an environment which is pop-

ulated with static obstacles as shown in Fig. 1. The vehicle state is described as a

tuple x = (x, y, ✓, v, �). We consider agent’s state st = (�x,�y,�✓,�v,��, ✓, v, �, l)
where �xj is the difference between the j-element of the tuple between goal and
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Fig. 1. The learning environment is shown in the left figure. Blue rectangle with
Red arrow is the current state of the robot. Green rectangle is the goal desired state.
Blue rectangles are the static obstacles. Orange lines are the lidar rays and Cyan

lines are the safety radius. The center and right figures represent the trajectories
generated by LPPO (safe) and PPO (unsafe) policy for the same task respectively.

current vehicle state, ✓, v, � are elements of current vehicle state and l is a tuple

of rays-measurements from lidar. In this paper, we consider the same actions

and reward function from [7]. The actions at = (a,!) are composed of the linear

acceleration a and rotation rate !. For details of the actions, kinematic model

and reward function we refer the readers to [7].

Safety Constraints The safety constraint cost is induced by a velocity of

the autonomous vehicle at which it moves near to the obstacles due to the risk

of collision like the method proposed in [8]. We impose an immediate constraint

cost as ci(si) = kvik⇥1{klk  rsafety}, where rsafety = 0.5m is the safety radius

– see Fig. 1, l is the current lidar signal, and 1 is boolean function. This safety

constraint allows to the agent to move near obstacles at tolerable velocity vi so

as not to violate the tolerable limit di.

4 Evaluation

We trained two policies, i.e. PPO [6] and LPPO [4] on a dataset from [7]. The

dataset is comprised of tasks which consist of start, goal and a set of static

obstacles. The goal is to generate a trajectory from start to goal. In the Fig. 2

we show the learning process of these algorithms. We can see that PPO starts to

converge earlier in comparison with LPPO. But at the same time it violates more

safety constraints. On the other hand, the LPPO agent tries to find a trade-off.

After training we evaluate these two policies on a validation dataset through

the following metrics: success rate (SR, %), collision rate (CR, %) and mean

minimum clearance distance (MMC, m) of the successfully generated trajecto-

ries. The results for PPO are SR = 96.25%, CR = 3.75%, MMC = 0.61m,

and for LPPO are SR = 94.5%, CR = 3.5%, MMC = 0.67m. We see that the

LPPO agent tends to avoid the obstacles with more clearance in order to guar-

antee the safety constraints as shown in the Fig. 1. On the other hand, the PPO

agent acquired more aggressive behavior that tries to reach the goal as soon as

possible regardless of the risk of collision. Additionally, we can see that LPPO

agent finishes some tasks without success or collision. In this cases, the LPPO
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Fig. 2. A comparison of learning curves between PPO and LPPO.

agent prefers to make an abrupt stop instead of colliding with an obstacle. The

latter is a safe behavior that agent acquired thanks to the safety constraints.

5 Conclusion

In this short paper, we have evaluated the consideration of safety constraints

during the optimization process for policy gradient algorithm PPO. While PPO

can converge earlier and has a slightly high success rate, the learned behavior

of LPPO is more conservative due to taking the safety constraints into account.

Overall, considering safety constraints in the optimization problem provides a

more conservative and safe behavior without sacrificing of performance.
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Abstract. We describe the construction and evaluation of two robotic grippers 
for berry picking. Using a pneumatic cylinder drive, one was constructed from 
hard materials and the other from soft materials. A novel evaluation paradigm 
using a handle mechanism was developed, so the grippers could be directly op-
erated by human participants. An artificial bush was also constructed and used 
for evaluation purposes. Overall, both grippers performed worse than the human 
hand, indicating that further development is needed. 

Keywords: Robotics, Human Evaluation, Remote Operation, Agriculture, Soft 
Robotics, Grippers, Raspberry. 

1 Introduction 
There is a growing interest in robotic harvesting technologies [1, 2]. Recently 
there has also been significant development in the field of 3D printed robot 
components for harvesting, including the use of soft grippers [3], which are an 
area of intense research [4] and offer benefits such as low cost and ease of man-
ufacture [5]. Here we investigate soft and hard grippers for integration in low-
cost agricultural robot systems. We use human evaluation using the grippers as 
tools in picking tasks, thereby decoupling the operation of potential AI control-
lers from the intrinsic capabilities of each gripper design.   

 
  

  
Fig. 1. Soft Gripper Finger and Hand. Fig. 2. Hard Gripper Finger and Hand. Fig. 3. Handle. 

2 Mechanism Design 
We first developed a soft gripper with eight Ninja flex fingers, which can flex 
and grasp objects when its tendons are tensioned. To allow the fingers to bend, 
each consisted of a continuous back structure with four protruding block sec-
tions, separated by gaps (see Fig. 1 Finger). A string tendon was inserted 



through a small hole in each finger block all the way up to the fingertip, where 
it was firmly secured by a knot in the end of the string and glued to secure it in 
place.  Pulling the tendon closed the gaps between the blocks and caused the 
finger to bend. A small location hole at the lower end of each finger enables the 
attachment of all eight fingers to a circular hand structure using small screws 
(Fig. 1. Hand). A circular plate was fastened to the end of the pneumatic cylin-
der and all tendons were attached to it, and pulling the plate closed all eight 
fingers simultaneously. See Fig. 4A to see the principle of operation. When 
tendon tension was released, the springiness of the Ninja Flex allowed all fin-
gers to return to their original resting position without the need for active re-
traction. 

 The second gripper design used hard materials (Fig. 2). It comprises a 
pair of PLA+ fingers that were driven open and closed by an air cylinder acting 
on the end of a parallelogram mechanism (the principle of operation shown in 
Fig. 5A). To ensure the gripper could effectively grasp berries, both its fingers 
had a curved opening at their tips designed to accommodate an average sized 
berry.  

To test the grippers, a PLA+ handle was developed (Fig. 3), which en-
abled human participants to operate them as tools in picking tasks (Figs. 4B & 
5B). The handle has a diameter of 33mm to ensure that it could comfortably fit 
a human operator’s hand. An internal microswitch was housed within the han-
dle and used to activate a pneumatic actuator. The handle was hollow and the 
control cables from the switch to the Arduino Nano exited through its base. Its 
top provided a gripper attachment point, to ensure interchange between them 
was quick and easy. 

    
Fig. 4. Soft Gripper. Panel A Principle of 
Operation. Panel B Gripper Attached to 
Handle.  

Fig. 5. Hard Gripper. Panel A Principle of Operation. 
Panel B Gripper Attached to Handle. 

 
A Heschen CDJ2B 16-25 slim, lightweight (20g) double-acting pneu-

matic cylinders was chosen to actively close the gripper mechanisms (and also 
open the hard gripper), since it provides a clean and compact form of actuation 

A 

B 

A 

B 



[6]. The cylinder had a 16mm bore and 25mm stroke. Running at 5 bar air pres-
sure it could generate up to 50N force. It was controlled using a Heschen 4V210 
5-way 2-position 24-volt solenoid valve, which enabled the cylinder rod to be 
actively driven in and out. Quickfit 6mm ports and 6mm o/d polyethylene tubes 
were used to connect the air supply, which was provided by a small Clarke air 
Shhh 50/24 silent air compressor. Both grippers were operated using a switch 
on the handle mechanism that activated the solenoid valve using a driver circuit 
implemented on an Arduino Nano (Fig. 6).  
 To evaluate the grippers' ability to pick berries, a test bush was con-
structed from a wooden rack (Fig. 7A). Artificial raspberries were hung using 
Ninja Flex stalks, which released the berry when pulled with sufficient force. 
This provided a controlled simulation of real berry picking. To achieve this, the 
berry stem had a cone-like shape that fitted into holes at the base of the berry. 
The stems themselves were attached to the rack using a simple screw fastening 
mechanism, allowing for appropriate placement to mimic their natural growth 
See Fig. 7B to see the 3D printed berry stems. 

   

Fig. 6. Circuit for Pneumatic Controller Fig. 7. Test Berries and Bush 
 

3 Results  

  
Fig. 8. Experimental Results for each Gripper Mechanism. Panel A: Average Picking and Release Time 
across Participants. Panel B: Berries Missed Panel C: Berries Dropped. 

Four participants performed timed experiments to evaluate the effectiveness of 
using a hard and soft gripper, as well as their hands, in a picking task on an 
artificial berry bush. Participants were required to pull-off 34 artificial raspber-
ries and collect them in a bowl. A video link showing the picking task is pro-
vided here:      
https://youtube.com/playlist?list=PLFlgfzQylyK69KlPiWzTve7EWyr2Um5gP 

B C A 

A B 



We found the time taken to pick a berry varied substantially between 
conditions, as shown in the plots of the results in Fig. 8. The hand took an av-
erage of 1.0s to pick a berry, whereas it took 2.1s and 2.9s with the hard and 
soft grippers, respectively. Although the soft gripper took almost twice the time 
compared to the hard gripper to pick the berry, the time advantage was reduced 
considerably when berry dropping was considered. Results also showed that 
using the soft gripper, participants tended to miss the berry more often, but once 
picked, it had a lower chance of being dropped. Conversely, using the hard 
gripper, participants tended to be more successful in picking a berry but 
dropped it more often during transfer to the bowl.  

4 Discussion 
Using human evaluation, we demonstrated that two robotic grippers could suc-
cessfully harvest berries from a test raspberry bush. A hard gripper performed 
better in terms of berry grasping, whereas a soft gripper exhibited fewer berry 
dropping errors. Both were worse than using the human hand directly. Clearly, 
the gripper designs need to be improved, and future experiments are needed to 
further compare harvesting performance. We suggest that tracking and video of 
the picking task performed by human operation may provide a useful dataset to 
train future autonomous robotic systems. Finally, we thank the University of 
Plymouth for Proof-of-Concept support. 
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Abstract. We explore the use of a rover robot carrying an electric field
mill for ground-based atmospheric electricity measurement. The robot
platform includes a 2D LiDAR and stereo image camera for terrain map-
ping, with the aim of generating new insights into atmospheric electric-
ity processes. Initial teleoperated experiments allowed for the plotting of
measured voltages on a map using GNSS. We plan to explore the possibil-
ity of cooperative 3D mapping behaviours in a ‘sparse swarm’ configura-
tion of around six robots, with expert-in-the-loop oversight. Ultimately,
we intend for this research to inform opportunities in atmospheric elec-
tricity research on other planets, such as Mars.

Keywords: Electrostatics · Terrain Mapping · Sparse Swarms

1 Introduction

Atmospheric electricity is still poorly understood, on Earth and other planets
[2]. Developments in robotics technology, especially in Unmanned Aerial Vehi-
cles (UAVs), are leading to increased interest in atmospheric electricity research
opportunities with aerial robotic platforms (e.g. [4], [7]). Relatively little work
has been done with terrestrial robots (see [1] as a first example). Here, we present
initial findings from experiments using one rover robot carrying an electric field
mill for ground-based atmospheric electricity measurement. Beyond this initial
phase of the research project, ultimately we aim to deploy a ‘sparse swarm’ [8]
of multiple rovers dispersed across a wide geographic area, operating with some
level of autonomy to propose their movement through the environment with ex-
pert input and oversight. This should generate new insights into atmospheric
electricity processes: for instance tracking of dust devils and storms on Mars, or
comparing electrostatic weather phenomena between Earth and Mars.

2 Robotic Platform

The use of robot platforms for scientific survey presents several potential advan-
tages [3], including the e�cient and precise measurement of physical processes
across wide areas, especially if multi-robot systems can be deployed.
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Our base robotic platform is a ‘Leo Rover’: a 4-wheeled rover controlled by a
Raspberry Pi. Designed as a Mars-type rover, it has a linked rocker suspension,
making it well-suited to outdoor exploration (Figure 1). On top of the rover,
we add a sensor payload, including: a 2D LiDAR (RPLIDAR A1); stereo image
camera (Intel RealSense D455); a GNSS receiver (global navigation satellite
system) with RTK (real-time kinematic positioning) capabilities; and an upward-
facing electric field mill (JCI-140). To provide extra computing power for the
above-mentioned sensors a LattePanda Delta (a single-board computer with an
integrated Arduino) is connected to the Raspberry Pi controller over Ethernet.

Fig. 1: Leo Rover (back and front) with labelled sensors

The Raspberry Pi operates as the ROS (Robotic Operating System) master,
connected to the LattePanda running sensor processing nodes. The Pi is used to
do all the physical control of the robot, and it also publishes nodes for both the
IMU (inertial measurement unit) and wheel encoders. The LattePanda handles
the more computationally intensive tasks of combining the stereo image camera
and LiDAR to do Visual SLAM(Simultaneous localization and mapping). The
ROS package RTAB-Map [6] is used for this task and allows the creation of a
detailed 3D terrain map as the robot moves, which along with the readings from
the electric field, will allow the generation of a composite electrostatic map of
the outdoor environment [5]. With the deployment of multiple robots (e.g., up to
six across an area of multiple kilometres square), this map can be created more
rapidly, and also give novel insight into phenomena in atmospheric electricity,
for instance in how it interacts with the local terrain.
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Fig. 2: Trial 1, Date: 21/07/2023, Start time: 09:24 AM UTC, Scattered clouds

Fig. 3: Trial 2, Date: 21/07/2023, Start time: 09:30 AM UTC, Scattered clouds

3 Initial Trials

Initial teleoperated experiments across a relatively small area (around 20 m2)
used one robot and allowed the plotting of measured voltages on a geographic
map using GNSS. Two trials were conducted in the same location, an open urban
space. The results of the trials can be seen in Figure 2 and Figure 3, whereby
the dots show the electric field measured at each GNSS location, and the line
graph shows the electric field meter reading over time. The robot travels in a
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counterclockwise loop. Plausible voltage readings were obtained in the range -
100 to 15 V. A good comparison source is Reading Atmospheric Observatory
station1 which provides daily meteorological data. As we measure the electric
field and not the potential gradient a negative value is expected in fair weather.

4 Future Plans

There are several planned work packages to further this research. First, we will
calibrate the electrostatic sensor, using a setup where the robot is placed be-
tween two metal plates applied with a set known voltage, to determine the
relevant correction. Second, we will use Ansys Maxwell software electromagnetic
field modelling to obtain an appropriate geometric field enhancement factor for
the robot, to crosscheck the experimental correction. Third, we will deploy mul-
tiple robots with an intermittent communication architecture to create a sparse
swarm [8] of electrostatic robots. We will demonstrate cooperative swarm be-
haviour using (semi-)autonomous choices on where to focus mapping, including
the use of expert user input. Fourth, we will develop a simulation of robot swarm
electrostatic field measurement on Mars, with a view to the long-term potential
of this research in space missions.
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1 Introduction

Robotic manipulation has been a subject of extensive research, with a primary
focus on static or dynamic environments. However, real-world scenarios often
present a blend of both, termed as ’hybrid scenarios’, where static and movable
objects coexist. These hybrid environments pose unique challenges, including the
need to distinguish between static and movable objects, adapt to unpredictable
shifts, and respond to the activities of other agents [4, 1]. Despite the prevalence
of such scenarios, they have been largely overlooked in the current body of
research.

The complexity of hybrid scenarios is further amplified when we consider
the need for a robotic arm to adapt to a wide array of situations that may
arise within these environments. These situations could range from interactions
with static and movable objects to a combination of both within a single scene.
The ability to navigate these challenges e↵ectively is crucial for the successful
deployment of robotic systems in real-world settings [2].

In response to this gap in the field, we propose an adaptive probabilistic
motion primitive (ProMP) [6, 2] based approach. This approach combines non-
prehensile actions [5] and vision techniques [7] to enhance the learning of the
properties of the hybrid scene. This enables the robot arm to accurately identify
object states and generate appropriate trajectories for the manipulation task.
The main components of our approach are an exploration module and an adap-
tive ProMPs framework for trajectory generation.

Our research aims to extend the current understanding and capabilities of
robotic manipulation in hybrid scenarios. By developing a reinforcement learning-
based pipeline that includes exploration, object state detection, and adaptive
trajectory generation, we seek to improve the accuracy, e�ciency, and adapt-
ability of robot arm motion planning and manipulation. This method has the
potential to significantly enhance the performance of robotic systems in real-
world applications, where environments are often dynamic and unpredictable.

The primary objectives of the research are to:

– Develop an exploration module to e�ciently explore and understand hy-
brid scenarios. This should accurately perceive the environment and build
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Fig. 1: RL-based Adaptive ProMPs.

a representation that captures the location, properties, and types of objects
(static and movable).

– Extend the existing ProMPs framework to autonomously adapt to the prob-
lems of motion planning in hybrid scenarios, such as moveable obstacles
interfering with predicted motion trajectories.

– Evaluate the performance of the proposed pipeline through simulations and
real-world experiments, focusing on accuracy, robustness, and adaptability.

1.1 Method

The Fig. 1 shows the structure of the RL-based adaptive ProMPs.

– Vision Technique: A fully convolutional network (FCN) [9] can be used to
facilitate a more nuanced segmentation process. This implementation per-
mits the robotic system to achieve a more comprehensive understanding of
the spatial relationships between di↵erent objects. When integrated with
the Robot Operating System (ROS) within the Gazebo simulator, the re-
sulting system is able to perform an accurate object segmentation within
the environment.

– Non-prehensile Actions: In the exploration module, we utilize reinforce-
ment learning (RL) algorithms, specifically Proximal Policy Optimization
(PPO) [8], to facilitate the discovery of feasible trajectories within hybrid-
scenario environments by the Franka robot arm. The PPO algorithm has
been chosen due to its recognized sample e�ciency, stability, and reliability
- attributes that render it suitable for the complexities of hybrid environ-
ments. Furthermore, PPO’s robustness to hyperparameter choices, ease of
implementation, compatibility with prevalent RL libraries, as well as its scal-
ability for large neural networks and parallelized training, make it well-suited
for tasks involving high-dimensional state and action spaces that characterize
hybrid scenarios.

– Adaptive ProMPs for Trajectory Generation: We extend the exist-
ing Probabilistic Movement Primitives (ProMPs) framework [3] to handle
hybrid scenarios. To do this, we incorporate the property of the scenario
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into the ProMPs model. We propose adding virtual via-points around obsta-
cles, calculated as the closest points on the obstacle’s surface moved away
in the direction of the normal vector. Conditioning the ProMP distribution
on these via-points allows the generated trajectory to circumvent di↵erent
types of obstacles, thereby optimizing the trajectory.

In our study, we developed a hybrid-scenario experimental framework involv-
ing four types of items: static boxes, spheres, cylinders, and movable boxes. These
items were arranged into three distinct settings, each increasing in complexity.

The experimental process began with the robotic arm identifying and navi-
gating obstacles using a combination of reinforcement learning and sensory in-
puts, including vision. We employed a Fully Convolutional Network (FCN) to
process scene images and deduce the 3D location of each object, with obstacles
marked in distinct colors for clarity.

We incorporated Learning from Demonstration (LfD) to train Probabilistic
Movement Primitives (ProMPs), which were then updated or ”conditioned” to
reflect the current state of the environment. In hybrid scenarios, we designated
via-points around obstacles to condition the ProMPs for adaptation, ensuring
trajectory generation that was attuned to the current environment.

When a movable obstacle appeared in the predicted trajectory, the robot
arm executed a non-prehensile action to displace the obstacle, maintaining the
fluidity of the process. Finally, an optimal trajectory was sampled from the
conditioned ProMPs, representing a smooth and e�cient movement of the robot
arm that considered the current environment and any remaining obstacles.

1.2 Evaluation

We will evaluate the proposed pipeline through a series of simulation-based and
real-world experiments. The performance metrics will include:

– Accuracy: The ability of the pipeline to generate appropriate trajectories
based on the detected object states.

– E�ciency: The time required for the adaptive ProMPs to generate and
execute trajectories.

– Adaptability: The capability of the pipeline to handle changes in the en-
vironment and object states, demonstrating its robustness in dynamic situ-
ations.

Accuracy verification starts with the success rate of the motion planning,
the ability to successfully avoid dynamic objects and the ability to ensure safe
movement of the robot arm.

We record the time taken by the adaptive ProMPs to generate a trajectory
after conditioning on the current environment. We perform this measurement
across multiple trials and compute the average trajectory generation time. This
will help assess the computational e�ciency of the ProMPs. In addition to eval-
uating e�ciency in terms of time, consider other performance metrics such as
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trajectory smoothness, task success rate, and safety (e.g., collision avoidance).
This will provide a more comprehensive view of the adaptive ProMPs’ perfor-
mance in the hybrid-scenario environment.

We will evaluate the ability of ProMPs to adapt to external perturbations,
such as sudden changes in the environment or the presence of obstacles. De-
sign experiments where the learned ProMPs need to adapt in real-time to these
perturbations and measure their performance in terms of task success rate, re-
sponse time, and other relevant metrics. Compare the results with other methods
to demonstrate the robustness of ProMPs in adapting to perturbations.

2 Conclusion

This research aims to extend the ProMPs framework for robotic manipulation in
hybrid scenarios with static and movable objects. By developing a reinforcement
learning-based pipeline that includes exploration, object state detection, and
adaptive trajectory generation, we seek to improve the accuracy, e�ciency, and
adaptability of robot arm motion planning and manipulation. This method has
the potential to significantly enhance the performance of robotic systems in real-
world applications, where environments are often dynamic and unpredictable.
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Abstract. Remotely controllable non-invasive surgical robots are an

emerging technology in healthcare. Soft material fabricated suction cups

can be used as a reliable means for adhering medical devices in-vivo.

However, the safe detachment and removal of these medical devices can

be challenging, often requiring the use of magnetic torque or a high-

voltage electric field. This paper proposes a non-invasive method of de-

taching suction cups integrated into a soft device by using lateral strain

from its elastomeric fluidic actuators. The study highlights initial find-

ings and proposes design modifications to improve the soft device with

future plans to adapt it for use in implants for regenerative medicine.

Keywords: Soft robotic implants · Elastomeric Fluidic actuators · Suc-
tion cups detachment

1 Introduction

Remotely controllable non-invasive surgical robots are an emerging technology
in medicine. As part of this technology, the interaction at the interface between
tissue and robots, by means of adherence is of interest. Although chemical glue,
gecko-adhesion [1], electroadhesion [2] and magnetic field [3] are few means of
adherence, the need for high voltage, bio-compatibility problems [3], makes their
in-vivo use challenging. Passive suction cups, due to their minimal preload re-
quirement, and absence of external force to keep them in position, are strong ad-
hesives. They enhance the non-invasive nature of implants, eliminating the need
for suturing. Despite significant research in enhancing adherence, the methods for
safe detachment of adhesives have been limited to using high-voltage dielectric
materials [4] or through external magnetic torque [3]. Inspired by use of elas-
tomeric actuators for therapeutic purpose [5], this study proposes a new method
of detaching suction cups using lateral strain from inflatable fluidic elastomeric
actuators.
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Fig. 1. a) Concept image of soft implant with suction cups b) Pnuematic ballooning

actuators are inflated with pressure, P, to detach suction cup. c)Final detachment

2 Materials and Methods

2.1 Fabrication

The implantable soft robot consists of two suction cups and three ballooning
membrane actuators as shown in Figure 1. Ecoflex™ 00-50 (Smooth On Inc.)
was used for fabricating the implant due to its bio compliant material property.
Cone shaped suction cups were used due to their higher adhesion strength on
di↵erent surfaces [3].

Fig. 2. Fabrication procedure

The fabrication steps are shown in Figure 2. For preparing the implant and
suction cups, equal quantities of Ecoflex™ 00-50 part A and B were combined
and mixed in an ARE-250 (Thinky) mixer for three minutes. The mixture was
degassed and poured into resin moulds and left to cure for three to four hours
at room temperature. The dimensions of the implant were 68x18x5 mm, with a
1mm thick ballooning membrane. The suction cups had a diameter of 18mm with
2 mm base thickness and were glued to the ends of the implant using Sil-Poxy™.
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2.2 Experimental Procedure

Measurements for adhesion force of a single suction cup were performed in dif-
ferent environments - dry, moist, underwater and under oil. For each test the
suction cup was placed on a Petri dish and a preload of 4.5 N was applied. The
adhesion force data was measured by pulling the suction cup vertically using an
IMADA tensile machine. The data was analysed in Matlab.

To investigate detachment, a smooth, wet glass slide was used as a substrate.
The three actuators were manually controlled using 5ml syringes, and connected
to a pressure sensor. The glass slide was pushed downwards, followed by a preload
of 5N, which after trial and error was found to be the force required for proper
adherence of the glass slide onto the suction cups. A pressure of 0.38 bar was
used for inflation. Two inflation patterns were investigated: first in which the
mid actuator, followed by outer actuators were inflated; in the second pattern,
the outer actuators were inflated first, followed by the mid actuator.

3 Results and Discussion

Figure 3 shows the mean adhesion force of the suction cups and the limits of
error bar show the standard deviation. In the moist and underwater conditions,
the adhesion force was greatest at 2.96 and 2.65 N, respectively, followed by 1.79
N for dry and 0.95 N for oil. The higher e�cacy of adhesion in underwater and
moist conditions, makes the suction cups suitable for in-vivo use.

Fig. 3. Adhesion force of suction cups in di↵erent environments

The detachment experiment showed that by inflating all three actuators in
any inflation pattern, the implant was able to overcome the adhesion force of a
single suction cup. This is shown in Figure 4. Inflating the middle actuator ap-
plies a lateral strain on the outer actuators, resulting in a tangential force on the
rim of suction cup, leading to detachment. The actuators can also be controlled
to induce mechanostimulations for tissue regeneration [6][7]. By increasing the
actuator diameter, and adding pressure control, failure due to overinflation can
be minimised.
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Fig. 4. Detachment cycle. The outer and mid actuators are inflated (b). Lateral strain

between actuators leads to tangential force on a suction cup (c) causing its release (d)

4 Conclusion and Future Work

This work proposes the use of soft pneumatic actuators to achieve safe detach-
ment of an implant. For future work, untethered means of inflation will be in-
vestigated to enhance safety and lifespan of the device for in-vivo use.
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Abstract. Extended Reality (XR), including Augmented Reality (AR),
technologies are being used within manufacturing to immerse operators
into a ’cyber-physical’ environment. This project investigates the use of a
multimodal AR application to provide instructions over visual, auditory,
and haptic modalities. A Microsoft HoloLens2 and two Bangle.JS wrist-
watches were chosen to deliver the experience. The trial task consisted
of moving objects around a desk as a representative of a pick-and-place
manufacturing activity. Statistical significance was found for the perfor-
mance (time, errors) and experience with visual or auditory modalities
compared to haptics. Overall, this study provided an insight into the
utility of using visual, auditory, and haptic modalities within a simple
manufacturing scenario.

Keywords: Extended Reality · Augmented Reality · Multi-modal Sys-
tems · Manufacturing · Pick and Place · HoloLens.

1 Introduction

Global manufacturing is currently undergoing a ‘Fourth Industrial Revolution’,

marked by the blurring of the boundaries between the physical and digital worlds.

Augmented Reality (AR) is uniquely positioned to lead this new technological

era. AR is used to assist operators in their daily activities, with the most common

applications being assembly, training, maintenance, and remote collaboration.

This has enabled measurable benefits to the manufacturing process. For example,

an experiment conducted by Z. H. Lai et al.[1] showed that using an AR system

reduced the time and errors of assembly tasks.

AR in the manufacturing industry is promising but limited due to the lack of

user-centred design approaches, such as natural interaction. A report by Alipran-

tis J et al. [2] found that user experience has not been properly considered when

designing AR applications. R. K. Khamaisi et al.[3] found that AR applications

developed using a user experience-centred design approach produced both objec-

tive and subjective benefits. Furthermore, multimodal user interfaces have been

identified as a promising 3D user interaction technique. This paper compares the
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performance of modalities in delivering a set of instructions as part of an AR

application, where each instruction corresponds to a consistent user action.

2 Methodology

Manufacturing Use-Case The task chosen to mimic a manufacturing use-

case was to move objects between four locations (zones) on a desk, all within

a reachable distance. This was chosen as an abstract representation of a manu-

facturing task. However, it has direct relevance to order-picking tasks, such as

sorting items on a conveyor belt, or re-configuring connections between manu-

facturing devices. The human users received one instruction at a time asking

them to move an item between zones. The senses identified for feedback during

the task were visual, auditory, and haptics. Each sense showed potential to be

explored further within the manufacturing use-case.

AR Implementation The Microsoft HoloLens 2 was chosen as the primary

AR device due to its availability. (Fig. 1 A). It ran an AR application built

using the Unity Platform. Additionally, the Bangle.JS programmable watch was

chosen to relay haptic cues due to its low price and simple programming interface

(Fig. 1 A). The visual modality was implemented by placing an AR-rendered

ring around a zone, while the auditory modality was implemented by playing a

voice recording stating the name of a zone. The haptic instructions consisted of

making the watches buzz in specific configurations. Fig. 1 B, C illustrates how

these commands were provided to participants across each modality.

Fig. 1. A: Micosoft HoloLens2 (left) along with two Bangle.JS watches, one on the left
hand, the other on the right hand B: The view of the user when the visual modality is
enabled. Red: Pickup command, Blue: Put-down command. C: The auditory (a speaker
playing a recording of the zone name) and haptic (a buzz on the wrist) modalities

Experimental Procedure The human user trials were ethically approved by

the University of She�eld. Ten participants, 2 females and 8 males, between
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the ages of 22-30, mostly unaccustomed to using AR, took part in the experi-

ment. The three modalities were trialled in isolation to gauge their e↵ectiveness

at instructing users to perform a simple task. The method used to indicate a

zone over each modality is detailed in Table 1. Participants were informed on

the nature of their task and the form of the instructions. Each trial consisted

of 14 commands, 7 pickups and 7 placements. Participants’ hands were tracked

to automatically progress the sequence as they moved between zones. To adjust

users to the new medium, they were allowed to have one practice trial using

all the modalities simultaneously. The order of the modalities was randomised

and uniformly distributed. Both quantitative (errors and completion times) and

qualitative (usability survey) assessments were made to measure user satisfaction

and performance for each modality. The time participants took to complete a

task sequence was recorded, and mistakes that the users made were noted. More-

over, any participant comments, questions, or general frustrations were recorded.

After the end of each task, they were asked to complete the Standard Usability

Survey (SUS) [4], consisting of 10 questions answered on a Likert scale from 1-5.

Table 1. Cues for the zones in each modality.

Modality Left Zone Center Zone Right Zone Discard Zone
Visual Coloured AR Ring Around Zone Coloured AR Ring Around Zone Coloured AR Ring Around Zone Coloured AR Ring Around Zone
Auditory ”Left” ”Center” ”Right” ”Discard”
Haptics A Left Wrist Buzz A Buzz on both Wrists A Right Wrist Buzz Two Buzzes on both Wrists

3 Results

Participants took longer to complete tasks using the haptic modality than vi-

sual and auditory modalities; also making more mistakes, when performing a

between-subjects comparison (Figure 2). Furthermore, participants completed

tasks at a comparable rate when receiving instructions through audio over visu-

als, with only a marginal increase in mistakes. The spread of participant times,

shown in Figure 2, details the variance in results for each modality. Using Welch’s

T-Test, statistical significance was found between the visual and auditory modal-

ities against the haptic one, with powers of 0.58 and 0.53 respectively. Moreover,

the results showed that participants enjoyed using the visual and auditory modal-

ities over the haptics Table 2.

Table 2. Average SUS Scores for the modalities tested. A score of 68 or higher is
considered better than average.

Modality Visual Auditory Haptics
Average SUS Scores 78.25 76.5 54.2
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Fig. 2. Results of the trials. A: Box and Whisker Plot showing the timed results for
each modality. The spread of completion times is shown along with various outlying
pieces of data. B: The total number of mistakes made across all trials for each modality.

4 Conclusions and Future Work

A multimodal AR system was proven capable of delivering instructions to users

in a simple manufacturing use-case. Trials showed that visual and auditory

modalities performed better and had higher participant satisfaction than haptics.

Further research should be done into how modalities may be used in combination

and how each modality is best used in di↵erent manufacturing scenarios. This

will improve operator satisfaction and e↵ectiveness across manufacturing.
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Abstract. This work presents an access control mechanism framework
for MARs in healthcare that addresses some of the security and privacy
challenges posed by the deployment of such systems. The proposed sys-
tem presents a novel authorisation mechanism, to achieve fine-grained
zero-trust access control while preserving the confidentiality of patient
data. The proposed mechanism incorporates privacy-preserving access
protocols to prevent unauthorized access attempts and protect the iden-
tity of users accessing the system. Including user-centric access control
and an authorisation mechanism according to the stakeholder’s roles and
the requested information at a given time. Additionally, the work intro-
duces the internal process framework to the proposed system, in ROS
level of communication.

Keywords: Access control framework · Privacy by design · Security by
design.

1 Introduction

The integration of multi-modal assistive robotic systems (MARs) in healthcare
has shown great potential support for improving independent living, providing
personalized care, improving patient outcomes, and reducing healthcare costs.
However, the deployment of MARs in healthcare and the development of human-
robot interactions also raise significant concerns regarding the security and pri-
vacy of sensitive patient data. In this context, access control mechanisms play
a critical role in ensuring that only authorized users can access and manipulate
patient data.

2 Background Literature

The traditional one-time authorisation opens access to intruders and potential
unauthorised users, therefore, it is crucial to secure the channel of communication
to preserve the user’s right to privacy. The acceptable use of technology and
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perception of the elderly for monitoring daily living was reviewed by [2], a set of
semi-structured interviews conducted on adults, resulting in a positive perception
of the need for assistive technology. Furthermore, the recent pandemic has given
us a range of feedback on the effective adoption of digital solutions as mentioned
in a recent systematic review [3].

Policy development and defining controls can structure the boundaries for
maintaining patient’s privacy [6], this is also beyond informational privacy as
a patient may feel a social-emotional bond with their assistive robot and share
information based on their psychological influence [4]. Ethical and privacy ques-
tions arise on what data should be accessed by the stakeholders. How much
of the data is accessed at a given time? What could impact the data access?
What is the retention period of the access? Who authorises the access? And
more questions to follow. A recent study discusses access policies, the author
claims to contribute first attempts on the architecture and enforcement layer as
well as on joint modelling for assistive robots, the author considers challenges, a
road map for the policy, objectives layer and activity-centric access control. The
paper explores the relationship between task planning, and access control and
how this may be adopted in a humanoid assistive robot [1].

A research conducted on state-of-the-art literature on data security and user
privacy in interactive social assistive multimodal robotic systems (ARMSys) for
healthcare [5]. Analysing the occurrence of data leakage and privacy concerns
in a multi-modal setting. The research covers some key security and privacy
requirements of ARMSys, suggesting how to improve users’ trust by making the
decision processing transparent using technologies such as blockchain. The paper
continues to discuss authentication challenges, access control and a secure-by-
design approach, which could be personalized depending on the type of data and
personal preferences. The proposed security framework solution is theorized but
not specified such as the use of blockchain, its consensus mechanism and the
practicality of the internal process within such system.

3 Proposed Framework

The proposed access control mechanism in Fig. 1 illustrates a novel approach to
processing privacy and security by the robot, introducing an access control policy
that subsequently verifies the robot’s availability of the requested information,
whether the authenticated user is authorised to access the data, conditions of
the situation to affirm the purpose of the requested information is either based
on normal or emergency states and as a sequel whether it is appropriate to
share the information requested. Fig. 2 presents the proposed internal process
framework within MARs following the robot operating system’s (ROS) commu-
nication channels. The nodes within the framework represent the access control
mechanism using ROS nodes and communication methods.
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Fig. 1. Proposed Authorisation and Access Control Mechanism Framework

4 Analysis and Discussion

The system logs are designed to enhance accountability and auditability of the
decision-making process, considering the inputs and outputs of the system for the
user-robot interaction, based on the authorised level of access in addition to the
role-based access. The proposed system is for a realistic user-centric healthcare
scenario where the assistive robot holds the patient’s wellbeing data and the
stakeholders can retain only the necessary information by direct communication
to the MARs, the findings indicate possible improvement to independent living
in a healthcare environment by delegating the burden of responding to wellbeing
related questions to the robot, as a result, reducing the human error factor. The
system logic from the user input to the action process is handled by the controller
node, the sole responsibility of the node is to direct the overall process flow of
the system in place. User inputs are processed by the interpreter node, sent to
the controller node to confirm the authentication and pass to the access policy
node where the checklist process takes place. The final outcome of the process
is either granted or rejected and the feedback is given back to the user. The
system communicates through the channels in plain text by default, therefore
the security features must be enabled to prevent security incidents.
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Fig. 2. Proposed Robot Operating System (ROS) Internal Process Framework

5 Conclusion

Our approach can be used as a blueprint for the design and development of secure
and privacy-preserving access control mechanisms, an auditable log system and
an authorisation process for MARs in healthcare and other sensitive domains.
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Abstract. This paper explores the role of multi-task pre-training in en-
hancing the e�ciency of Interactive Reinforcement Learning (RL) for
personal robots. By employing multi-task pre-training, the robot is ini-
tially trained on a subset of environments and then personalised by
users through evaluative feedback in unseen settings of the environment.
The preliminary results demonstrate that pre-training significantly im-
proves sample e�ciency, facilitating quicker convergence to personalised
behaviours. These results demonstrate a promising approach to enhanc-
ing adaptation and personalisation in the field of social robotics and
enhancing the usability of personal robots across diverse domains.

Keywords: Robotic Personalisation · Interactive Reinforcement Learn-
ing · Evaluative feedback.

1 Introduction

Personal robots have emerged as a highly promising technology for carrying
out interactive tasks in various settings, including domestic and public environ-
ments. A critical factor in ensuring the successful adoption of these robots on a
widespread scale is the ability to achieve a high level of personalisation in their
behaviour, allowing them to be tailored to the specific needs and preferences of
individual users [13]. However, attaining such a degree of personalisation presents
significant challenges, which can potentially be addressed through the inclusion
of human users in the control loop.

One approach that facilitates user-driven personalisation is Interactive Re-
inforcement Learning (RL). In this method, users provide direct feedback to
the robot, actively influencing its decision-making [10]. One specific approach of
interactive RL is through teaching with evaluative feedback; users personalise
the robot’s behaviour by assessing each performed action[14]. In this approach,
humans with non-programming skills can transfer their task knowledge to the
robot by providing evaluative feedback, which reduces the robot’s exploration
time and speed up its learning compared to classical RL[?]. This approach has
been proven successful in real-world robot control [5] [11] [8]. However, the pro-
cess requires evaluating a large number of actions before arriving at an e↵ective

? This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Sk lodowska-Curie grant agreement No
955778.
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policy, which becomes particularly challenging during the initial stages when
the robot is initialized with a random policy. Consequently, providing accurate
feedback becomes di�cult for users.

To address this challenge, certain studies [6] propose initialising the robot’s
policy with an expert demonstration provided by the human user. This approach
helps reduce the amount of human feedback needed for convergence. However, it
may prove to be very challenging for non-expert human trainers to deliver high-
quality demonstrations [7]. In this study, we investigate the role of pre-training
in improving the sample e�ciency of Interactive RL. Our approach focuses on
multi-task pre-training, where the robot is initially taught a general policy in a
subset of pre-defined environments [12]. Users can then personalise the robot’s
behaviour in new environments through evaluative feedback. Figure 1 provides
an overview of the proposed framework. By leveraging pre-training, our goal is
to enhance the learning e�ciency of Interactive RL and enable more e↵ective
user-driven personalisation in robotic systems.

Fig. 1: Illustration of the framework. (1) The robot first learns a basic policy
by performing a multi-task RL pretraining on di↵erent environments. (2) A
user then personalises the robot’s behaviour on a new task through evaluative
feedback.

2 Methodology

The idea behind this study is to create an initial decision-making ability for the
robot with multi-task RL pre-training, that can later be personalised by users
through feedback. This approach enables the robot to handle di↵erent tasks that
share the same state and action space but have distinct goals defined by separate
reward functions. By employing this method, we hypothesise that the agent will
learn a better representation of the environment that would allow users to rapidly
personalise the robot to a new unseen configuration of the environment.
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We consider the Fruit-Picking environment [1] [3]. It consists of a gridworld
containing di↵erent types of fruits that the robot needs to collect. Similar to
previous work [1], the robot learns to pick one type of fruit per task during the
pre-training task. In the personalisation phase, users are required to teach the
agent a di↵erent task that was not previously encountered by expressing varying
degrees of preference for each fruit in the environment (for e.g. :60% preference
for strawberries, 30% preference for apples, and 10% preference for blueberries).
We train the agent using a deep Advantage Actor-Critic Architecture. [2].

Figure 2a presents the results obtained from training an A2C agent on the
Fruit-Picking environment, comparing the performance with and without multi-
task RL pretraining. Our approach (see orange line) achieves the same perfor-
mance using 8⇥ fewer environmental steps. This demonstrates that the multi-
task pre-training can enhance the sample and feedback e�ciency of interactive
learning with evaluative feedback.

Additionally, Figure 2b displays the preference distribution achieved after
training the robot to collect fruits based on the user preferences. We notice that
the initial multi-task pre-training enables the robot to collect all types of fruits
equally. After training with the simulated feedback, the robot learns a policy
(51.4% strawberries, 27.3% apples, 21.3% blueberries) that proportionately cor-
responds to the actual distribution of ground truth (60% strawberries, 30% ap-
ples, 10% blueberries). This suggests that our approach allows the robot to learn
policies that align with the human’s intent, enabling users with no programming
expertise to personalise the robot behavior with fewer feedback.

(a) Learning curve of A2C agent with and
without pre-training on the Fruit Picker task.

(b) Mean Preference Distribution of the
collected fruits on 1000 episodes of the
Fruit Picker task.

Fig. 2: Evaluation of the framework on a new unseen environment.



4 I. Tarakli et A. Di Nuovo

3 Discussion

Multi-task RL pre-training has several benefits for personalisation and e�cient
interactive learning for personal robots. The inclusion of pre-training notably
enhanced sample e�ciency, supporting the hypothesis that it enables the robot
to acquire a comprehensive environmental representation, accelerating learning
when incorporating human feedback. Additionally, the pre-training phase facil-
itated the robot’s adaptation to user preferences, allowing users to refine the
robot’s behavior through evaluative feedback to align it more closely with the
desired distribution.

Future work should consider comparing the e↵ectiveness of multi-task RL
pre-training with alternative methods, such as pre-training from demonstration
[4] and meta RL [9]. Additionally, we will validate the framework on physical
robots with human participants which will allow us to evaluate the scalabilty of
the method with real human feedback.
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Abstract. Modern robot simulators are commonly highly complex, of-
fering 3D graphics, and simulation of physics, sensors, and actuators.
The computational complexity of simulating large multi-robot systems
in these simulators can be prohibitively high. To achieve faster-than-
realtime simulation of a multi-robot system for rapid experimentation,
we present ‘move base abstract’, a ROS package providing a high-level
abstraction of robot navigation as a “drop-in” replacement for the stan-
dard ‘move base’ navigation, and a bespoke integrated minimal simu-
lator. This bespoke simulator is compatible with ROS and strips the
simulation of robots down to the representation of robot poses in 2D
space, control of robots via navigation goals, and control of simulation
time over ROS topic messages. Replication of an existing MRS simu-
lated study using ‘move base abstract’ executed 2.87 times faster than
the real-time that was simulated in the study, and analysis of the results
of this replication shows room for further optimisations.

Keywords: Abstract Simulation · Multi-Robot Systems Simulation ·
Robot Navigation.

1 Background

Most popular robot simulators, such as Gazebo and Webots, can boast 3D graph-
ics, and simulation of physics, sensors, and actuators. This detailed simulation
is necessary for many applications, but it has performance costs that can make
faster-than-real-time simulation di�cult. Some applications, however, may not
require such complexity of simulation. For many MRSs (Multi-Robot Systems),
representation of time, robot poses, and robot navigation, is su�cient for initial
broad exploration or comparison of algorithms and methods [2,1]. Behaviours
that robots may engage in once they reach allocated tasks may be abstracted
as simply having a robot wait for the expected task duration. Task behaviours
may otherwise be implemented by the simulator’s user, with more niche robot
tasks less likely to have a readily available implementation. While this high level

? This work was supported by the UKRI’s E3 fund via Lincoln Agri-Robotics.
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of abstraction may not present as reliable an analogue of a real-world MRS as a
more complex simulation might, its simplicity enables experimentation at a pace
unattainable within more realistic simulators, especially when the complexity of
simulations often scales poorly with increasing numbers of robots. Abstract sim-
ulators can enable researchers of MRSs to investigate a broader range of possible
solutions for their applications, the best of which can be simulated more accu-
rately in a realistic simulator to increase confidence in these methods before
committing to time-expensive implementation in a real-world MRS.

We present ‘move base abstract’ (MBA), a Free and Open-Source Software
(FOSS) Robot Operating System (ROS) compatible “drop-in” replacement for
the standard move base navigation ROS package [3], with a bespoke built-in min-
imalist simulator aimed at maximising performance, but also compatible with the
‘stage ros’ and ‘Gazebo’ simulators, for users requiring more detailed simulation.
It can be accessed at GitHub.com/laurencejbelliott/move base abstract. MBA’s
simulator aims to provide faster-than-realtime simulation at speeds higher than
headless Gazebo, or other 2D simulators such as stage ros and Flatland, by ab-
stracting to a level above simulation of sensors, physics such as collisions and
forces, and complex robot navigation. Use cases for MBA are exemplified in a
ROS port of the multi-robot soil properties mapping simulation described in
Section 2.2, and in a “simulation mode” for the Innovate UK Robot Highways
project’s systems. The soil mapping MRS simulation is not concerned with sim-
ulating static obstacle avoidance or detailed physics, as these are not required
to represent an open field. Nor does it require simulation of sensor data except
for soil compaction measurements. Robot Highways’ “simulation mode” uses
MBA in conjunction with topological navigation and its bespoke coordinator, to
perform static obstacle avoidance by constraining navigation along predefined
paths, and for tra�c negotiation to avoid collision or deadlocking with other
robots, respectively.

2 Methodology

2.1 move base abstract (MBA)

MBA replaces the ‘move base’ navigation stack with a high-level abstraction
of robot navigation and provides a bespoke integrated minimalist simulator.
Upon receiving a navigation goal, this abstracted navigation system essentially
calculates the time that would be required for the robot to reach the goal moving
in a direct line, multiplying Euclidean distance by a given constant speed. It
then waits for the calculated time to elapse in ROS time, and finally updates
the robot’s pose to the pose specified in the navigation goal. The abstracted
navigation system is interfaced as a ‘ROS Action’ compatible with the commonly
used ‘move base’ ROS Action, allowing for sending, monitoring, and cancelling
goals in a standardised manner. The bespoke simulator is designed to leverage
standard ROS utilities, such as ‘map server’, ‘RViz’, and control of ROS time.
MBA can also publish to topics used to update robot poses in ‘stage ros’ and
‘Gazebo’, if the user needs a more detailed simulator.

https://github.com/laurencejbelliott/move_base_abstract
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2.2 Replication of Multi-Robot Soil Compaction Mapping Trials

In a previous work, ‘Agent-Based Simulation of Multi-Robot Soil Compaction
Mapping’ [5], we developed a simulation of a MRS for mapping soil compaction
in an open field using the Mesa agent-based simulation Python library [4]. Simu-
lated trials assessing the performance of di↵erent configurations of a multi-robot
soil compaction mapping system were previously conducted in this Mesa-based
simulation, and we replicate these in a ROS compatible simulation that uses
MBA to vastly reduce the execution time of robot navigation. Currently the
‘stage ros’ simulator is used in conjunction with the abstracted navigation of
MBA, but future work will see this use MBA’s built-in simulator. In the ROS
version of the simulation, the simulated trials were run at 3 speeds: 1x, 10x, and
15x, to measure an over-estimation of time elapsed during execution of complex
algorithms in the MRS’s coordinator. Simulation speed was reduced to 1x real-
time during processes such as task allocation and task creation to reduce this
over-estimation. To measure the similarity of results between di↵erent runs of
these simulated trials, the cosine similarity was calculated between the mean
performance metrics from one run of the simulated trials, and the same from
another run, as shown in Table 1.

3 Results and Analysis

Table 1. Mean of cosine similarities calculated across metrics recorded in pairs of
simulated multi-robot soil mapping studies.

Name of 1st Set of Trials
Name of 2nd Set of Tri-
als

Mean Cosine Similarity

TAROS 22 Mesa trials
TAROS 23 stage ros trials -

10x sim. speed
0.969960079

TAROS 23 stage ros trials -

1x sim. speed

TAROS 23 stage ros trials -

10x sim. speed
0.992865229

TAROS 23 stage ros trials -

1x sim. speed

TAROS 23 stage ros trials -

15x sim. speed
0.869587149

Cosine similarity ranges from -1 to 1, with values closer to 1 indicating greater
similarity. As seen in Table 1, a relatively high cosine similarity ⇡ 0.97 was mea-
sured when comparing the performance metrics from the Mesa trials with those
from the ROS trials run at 10x speed. This shows that the Mesa simulation
trials can be replicated in the ROS-based simulation with very similar results.
Some small dissimilarity may be explained by assumptions of the Mesa simula-
tion that are not made in the ROS simulation. These include Mesa operating
in discrete integer steps of time (seconds in our case), and continuous processes
being run once every time step. This means that complex computation that can
take several seconds to execute always takes 1 second in Mesa’s time. The mean
cosine similarity appears to decrease as the simulation speed is increased. The
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results remain highly similar to 1x speed at 10x speed, but are relatively dissim-
ilar at 15x speed. At 10x speed, the ROS simulation trials executed 2.87x faster
than realtime overall. At 15x speed, this increased to 14.18x times faster than
realtime, but the results in some metrics were significantly di↵erent to those
measured at 1x speed.

4 Conclusions and Future Work

At 10x speed, the results of the stage ros simulation trials are very similar to
those seen when running the simulation at wall time. It may be necessary to
further optimise the simulator and MRS coordinator’s more complex Python
code, or port some of the more complex nodes to C++ (starting with the co-
ordinator). This could help to attain reasonably accurate results when running
the simulation at speeds beyond 10x. The simulated experiments were run in a
Parallels virtual machine on a 2020 MacBook Pro with an 8-core 3.2GHz Apple
M1 CPU, and 16GB of RAM. It is expected that running simulated trials on
“bare metal” on a faster CPU could enable faster simulated time speeds, and
this may be investigated in future work. Future work may also support ROS
2, and simulate sensors and collisions in 2D, with the option to enable/disable
these features as necessary to trade performance for fidelity. This simulation,
and the bespoke simulator, provide a closer analogue to a real-world multi-robot
system than Mesa, both by making fewer assumptions, and through their use
of the ROS middleware. This should require minimal changes to the software to
enable it to coordinate real robots with ROS.
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Introduction 

Rapid and precise acquisition of situational information during a hazardous gas re-
lease is crucial to emergency responses. Mobile robotic gas distribution mapping 
(GDM) is an emerging technology that provides first responders with real-time spatio-
temporal data through gas concentration map media. However, the current operation 
of these robotic platforms remains heavily dependent on teleoperation. By automating 
these tools, one can eliminate the requirement of having trained remote specialists on 
site and facilitate optimized GDM. 

Previous studies on autonomous GDM often suffer from incompleteness or imprac-
ticality in terms of attaining a fully automated system capable of addressing real-
world hazardous release scenarios. For instance, the sensor simulated (non-robot) 
informative path planning study in [1] and the novel K-means clustering solution 
proposed in [2] perform GDM under a pre-determined occupancy grid map (OGM). A 
mobile robot however, when faced with a new hazardous scene, will not have access 
to such prior knowledge; the robot instead will need to build its own OGM using the 
Simultaneous localization and mapping (SLAM) functionality. Sampling strategies 
for real-world applications therefore would also need to actively infer both gas map 
and SLAM information to achieve a practical, optimized solution. Studies like [3] 
which attempted such work fell short of practical success in complex, obstacle-tight 
environments because of their use of the Kernel DM+V GDM function whose compu-
tational efforts leave little room for higher quality path planning, path following, 
SLAM and goal selection algorithms to be installed. 

In [4], Rhodes et al. addresses the feasibility issue of 3D structurally-aware GDM 
by introducing a Gaussian Belief Propagation (GaBP) factor graph solver to the 
Gaussian Markov Random Field (GMRF) gas representation first proposed by Mon-
roy et al. in [5], which was initially recognized because of its accuracy and superior 
plume-obstacle modelling properties. Their novel hybrid message scheduling system 
in [4] has enabled computationally feasible, real-time 2D and 3D GDM in unknown 
and obstacle rich environments to emerge, but the sensing robot is still teleoperated. 
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Fig. 1. General system architecture for an autonomous GDM application. The key functional 
components in the Compute Unit include SLAM to support robotic navigation and OGM 
building, the GDM function from [4] and the newly developed robot planning function. 

Fig. 2. Gas dispersion visualized in RViz via GADEN playback node. 

This study aims to develop an autonomous GaBP-GDM framework with the path 
planning and following function for mobile robotic applications seeking to operate in 
unknown and GPS denied environments, supporting the deployment of vehicles in 
both real life and high-fidelity simulation. 

Autonomous GDM Framework Development 

    The general system architecture for an autonomous GDM platform has been in-
cluded in Fig.1 to familiarize the reader with the subject.  

 
 
 

 
To fully test and verify different functions, the integrated simulation environment 

is developed. The framework is achieved in the Robotics Operating System (ROS) 
and a Clearpath Husky is employed during the study as the mobile sensing robot. To 

test the autonomous platform, a custom 60 x 50m factory environment gas leak sce-
nario was created using GADEN [6], a ROS high fidelity gas dispersal simulator 
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Table 1 Key ROS packages implemented. 

(Fig.2). Tight aisles were intentionally included. Note that an equivalent Gazebo set-
ting was created to act as the real world and mimic any physics interactions like ro-
bot-obstacle collisions. 

Established and commercially available ROS packages which provide functionality 
within path planning, low level path following control, as well as SLAM were ex-
plored. The final set of packages chosen are highlighted in Table 1. Google cartogra-
pher SLAM, known for its computationally efficient mapping capabilities in large 
environments, was key in providing accurate localization, especially when compared 
to the default EKF localization system provided by Clearpath which would tend to 
cause drift greater than 30 cm after several minutes of operation. Cartographer, on the 
other hand, ensured drift would not exceed approximately 10 cm and importantly 
would reduce error at times because of the loop closure characteristics offered by the 
function.  Unlike the proposed platform in [3], our framework does not rely on GPS 
for localization. Only LiDAR and other SLAM compatible sensors are needed, as 
well as a suitable chemical sensor, all of which can be configured by a user via ROS 
nodes. An informative path planning (IPP) solution is used to select the next sampling 
location which can provide more information gain. Move Base was another essential 
component to the framework as it provided robust path planning and control tech-
niques, including Dijkstra for global path planning, Dynamic Window Approach 
(DWA) for local, and a high-level velocity-based control, for the robot to navigate to 
the next gas sampling location.  

 
 

 SLAM Path Planning Path Following 
Package Cartographer Move Base (Dijkstra, DWA) Move Base (Velocity High level) 

 
A custom inference algorithm which communicates with the rest of the framework 

was also created in the form of several ROS nodes. The inference network was de-
signed with mechanisms in place to ensure that the robot does not seek an unreacha-
ble goal. In the IPP solution, several inference techniques that utilized live gas con-
centration mean, uncertainty and processed frontier data from live SLAM were ex-
plored. 

Results 

Each inference algorithm’s performance was evaluated against a lawn-mower 
ground truth sweep by measuring the RMSE of the modelled gas distribution over 
time. To conduct GDM, PID sensors with update rates of 1 Hz were used to capture 
the chemical measurements. The GaBP mapping algorithm was able to incorporate 
the new measurements and update its media within 0.5 second. Some visuals, includ-
ing a final gas map from the autonomous GaBP simulation are provided in Fig. 3 to 
show the capability of the developed simulation environment and the robotic GDM 
capability.  
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Fig. 3. (Left) Husky in RViz at an early stage of 2D GDM in a custom gas leak scenar-
io. (Right) The final gas map achieved at the end of the robotic GDM study. 

 

 

Conclusions 

With the recent introduction of the GaBP factor graph solver, robotic GDM plat-
forms are now subject to real-time inference updates that can be made available 
through an informative path planner to generate strategic destinations. This study 
addresses this opportunity by introducing a custom ROS framework that provides 
ready automation for mobile robotic GaBP-GDM applications operating in unknown, 
cluttered GPS-denied environments. In the context of future IPP algorithm develop-
ment for GDM, the ROS framework introduced offers to greatly reduce testing time. 
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Abstract. This paper presents HeteroMod, a heterogeneous modular
robotic system designed for industrial use. HeteroMod comprises core
modules and add-ons that expand the workspace and capabilities of the
system. It allows the axes of two core modules to be combined, by which
the torque output can be increased. To demonstrate the potential of
HeteroMod, a prototype system is built and tested.
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1 Introduction

Modular robots offer a flexible approach to building robotic systems, where mul-
tiple modules are combined into different physical configurations [1, 3]. Such
systems could choose and autonomously produce configurations that suits their
tasks. This could be especially relevant in industry, where there is a need to
rapidly adapt to changing task demands and manipulate large payloads. The
modular systems in [2, 5] could be applied in these industrial settings, however
they are restricted to manipulator configurations, and their maximum payload
is limited as modules cannot be attached in parallel to combine their torques.

This paper presents HeteroMod, a novel modular robotic system for industrial
applications. HeteroMod uses a combination of active and passive elements to
produce a wide range of configurations. Modules can also be combined in parallel
to effectively double the lift capability of individual modules.

2 Design

The HeteroMod concept (Fig. 1a) is built around core modules (c) with ad-
ditional capabilities provided by add-on modules, including links (l), and end-
effectors (e). The structures they can form are described using grammar rules:

S ! cX;S ! lS;X ! cX;X ! lX;X ! e,

where S is the start symbol. This formulation assumes that core and add-on
modules can occur in an arbitrary order, and that at least one active module
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Core
module

Link add-on

Gripper
add-on

(a) (b)

(c) (d) (e)

Fig. 1. HeteroMod system. (a) The concept, and (b) the design of the core module.
Example add-on modules include (c) a gripper, (d) a straight link, and (e) the combi-
nation of a dual-base and 2-to-1 reducer.

is required to transmit power to the end-effector. Further add-ons combine core
modules in parallel: these are a dual-base (d) and 2-to-1 reducer (t). With slight

abuse of notation, we write S ! d


c
c

�
tX, where terminal symbol


c
c

�
denotes

the parallel presence of two core modules.
The core module (Fig. 1b) utilises a central base plate, which the electronics

and top turret section attach onto. The base plate is rotated by a single motor
to provide yaw movement. The turret features a motorised hinge mechanism
providing pitch movement, and houses dual motors and control boards.

Add-on modules that consume power are termed active, otherwise they are
passive. Currently, a powered gripper module providing basic grasping capability
has been designed (Fig. 1c). Other potential active add-ons could provide fur-
ther actuation capabilities such as dispensing from syringes, or include sensing
technologies such as cameras. Passive add-ons allow the creation of a wider range
of topologies. Two passive link add-ons have been designed: a straight carbon-
fiber link (Fig. 1d) and a right-angled link. They reduce the number of active
modules required to form large structures, hence decreasing the weight and cost
of such configurations. Minimising the weight in this manner reduces the torque
required to actuate the configuration, further widening the range of potential
applications. Further passive modules could include a vehicle base to utilise the
yaw actuation for wheeled locomotion.
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(a) (b) (c)

Fig. 2. System evaluation: (a) physical 2 DoF manipulator used in the lift capacity
trials, (b) physical 4 DoF manipulator configuration, and (c) concept quadruped walker.

For larger manipulator configurations, core modules are combined through
a dual-base and 2-to-1 reducer (Fig. 1e). This provides a strong base and high
torque capabilities for heavier payloads. To the best of our knowledge, it is the
first adaptor for a modular robotic system that allows multiple axes of multiple
modules to be combined. The dual-base adaptor utilises a combination of gears
attached to a rotating plate to combine the yaw axes of the modules, while the
2-to-1 reducer consists of a single plate to combine the aligned pitch axes.

The majority of the custom parts are 3D printed from PLA+ plastic to al-
low rapid prototyping and minimise development costs. Geared DC motors with
encoders for rotation sensing provide movement of the joint axes through a fur-
ther 5:1 gear reduction. On the pitch axis, a pair of motors provide a theoretical
maximum stall torque output of 44Nm after additional reduction.

Physical connections between modules are made through standardised adap-
tor plates. Currently, wing-nuts and bolts allow for rapid reconfiguration without
tools. Future work will develop a powered quick-connect module to enable au-
tomatic reconfiguration.

Wireless communication for controlling the modules is implemented using
the reliable Message Queuing Telemetry Transport protocol, which allows un-
tethered control, suitable for locomotion configurations. A basic closed loop PID
controller is used to move the module axes to the desired positions based on the
motor encoder feedback. Power is provided to the core modules via an exter-
nal power supply, providing 12V DC. Future work will explore power sharing
between modules, as well as battery-powered operation.

3 Testing and Potential Uses

To validate system performance, lift capacity tests were carried out on a pro-
totype core module (Fig. 2a). A load was moved from a horizontal to vertical
orientation while lifting masses of 0.5 kg, 1.0 kg, 1.5 kg, 2.0 kg and 2.5 kg. The
maximum torque output on the pitch axis of an active module was measured as
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5.9 Nm before gears slipped: this compares favourably with the 3.07Nm produced
by the similar HyMod system [4]. The motors are capable of producing signifi-
cantly more torque than demonstrated in these trials, which could be utilised by
exchanging the 3D printed pitch gear mounting plate for a more rigid component.

To show the generalisability of HeteroMod, several configurations were cre-
ated. These are a prototype manipulator with a theoretical payload capacity
of 6.7 kg and a reachable workspace diameter of 1.15m (Fig. 2b), as well as a
conceptual quadruped walker (Fig. 2c) with a passive ‘body’ add-on. Further-
more, an articulated platform to transfer collections of parts between distinct
locations was created. Potential applications include manipulation of a range
of payloads on assembly-lines, or repeated visual inspection of hard-to-reach
components with a camera add-on. These could benefit from platforms that can
rapidly adapt to bespoke torque and reachability requirements, and that support
the integration of custom add-ons.

4 Conclusion

This paper has presented HeteroMod, a heterogeneous modular robotic system
based on homogeneous active modules. The system is scalable to a number of
configurations and can be produced at low cost: the current price of materi-
als for each core module is around £200. Although certain components could
benefit from reinforcement, the underlying principle and design has been shown
effective through prototype modules and initial testing. When compared to [2,
5], HeteroMod offers greater flexibility for end-effector options and user-designed
add-on modules. Additionally, a parallel attachment method for improved torque
at a given joint allows for greater scalability than current systems. Future work
will refine the mechanical design, as well as investigate automatic coupling and
power sharing between modules to realise a cost-effective solution for industrial
applications.
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Abstract. Swarms of robots could be used to self-assemble into bridges

across gaps in their terrain, with potential applications including in dis-

aster relief. Prior work has shown how such bridges can be constructed

in a force-aware manner to ensure they do not collapse, but only con-

siders structures with a flat upper surface. We build on this work by

considering how structures that follow a specified path, for example be-

tween platforms at two di↵erent heights, can be safely constructed. This

increases the versatility of these structures, bringing the research closer

to the requirements of real-world application.

Keywords: Swarm robotics · Cantilevers · Force sensitive robot

1 Introduction

By taking inspiration from ants [1], researchers have developed several dis-

tributed control schemes to self-assemble bridges from robots [2, 3, 5]. This could

be beneficial to allow robots to explore new areas in unpredictable environments,

for example when large groups of small robots are deployed to search underneath

the rubble of a collapsed building. Past researchers have shown how force-aware

methods can be used during such self-assembly to ensure these structures will

not collapse, allowing for safe construction in the real-world [3, 4]. These works

consider the construction of cantilevers with a flat upper surface, so can only

form bridges across gaps where both sides are the same height. In this paper, we

consider how the agents can be influenced to construct a cantilever at a given

angle to the horizontal, or through more complex paths. This adds versatility

for applications where the target location to build towards is unknown, or where

obstacles are present between the initial and target locations.

2 Problem Formulation

This work considers a similar environment to previous studies by Bray and

Groß [3]. Simulated square agents occupy a 2D grid of side length 0.1m. They

construct a cantilever from a vertical fixed support on the left of the environment,

as shown in Fig. 1. Agents can separately sense the moment M and axial force
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Fig. 1. The stages of the algorithm. Placed agents are shown in blue, active agents in

yellow, and the fixed support in grey. The desired paths by black dashed lines: in (a) and

(b) these are defined by the red angles, while (c) shows a non-linear path. (a) The active

agent first moves around the structure communicating with placed agents, following

either the purple or green path in the message-passing or local variants respectively. (b)

If the active agent believes the structure is stable, it extends the cantilever along the

path by placing in the first possible location clockwise from above the rightmost column

(cyan line emanating from the asterisked location). (c) If the active agent believes the

structure is unstable, it reinforces the structure: locations 1 and 2 are valid, whereas

location 3 is invalid.

F in the links they make to adjacent agents. These are compared to allowable
limits to calculate a criticalness for each link by dividing each measurement by

its allowable limit and taking the maximum resulting value; we assume links are

su�ciently strong in compression that negative F can be ignored. When either

allowable limit is exceeded, the link is close to failure and described as critical.
Structures with no critical links are referred to as stable, else they are unstable.

Active agents initialise above the fixed support, and move around the perime-

ter of the structure, communicating with their neighbours to receive information

about the current state of the force distribution within the structure. Once they

have sampled all the columns, they add themselves to the structure in a column

of their choice. They are now placed, and can no longer move. Another active

agent initialises when the previous one has placed itself in the structure. This

process repeats until a specified number of agents have been added.

The goal of the algorithm is to produce a stable cantilever that follows a given

target path for the longest distance while using the fewest number of agents: this

path could either be a straight line at an angle to the horizontal (Figs. 1a & 1b),

or a more complex function (Fig. 1c). The forces within links are calculated using

a truss-based simulator, which excludes the weight of the active agent [3].

3 Algorithm Design

The distributed self-assembly algorithm begins with the active agent gathering

data about the distribution of internal forces within the structure. Prior work

investigated two di↵erent methods of communicating the values of M and F
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Fig. 2. Simulation results. (a) The average Euclidean length reached at each angle,

and the corresponding horizontal and vertical lengths. (b) The e�ciency of structures

produced for each angle and Euclidean length.

measured in links of placed agents, called the message-passing and local variants
[3]: we also investigate the di↵erences between these approaches in this new sce-

nario. In the message-passing variant, placed agents coordinate to communicate

the maximum values of M and F measured in each column to the agent at its

top. The active agent therefore must only travel along the top of the surface

and communicate with these top agents to obtain this information (Fig. 1a, pur-

ple line). The local variant removes this communication between placed agents,

and instead requires the active agent to travel all the way around the structure

(Fig. 1a, green line) to obtain the measurements made by all the placed agents

on the perimeter, as these will theoretically be the largest in each column.

When the active agent has received the necessary force information, it must

choose where to place itself within the structure. If it believes the structure is

stable, it will place itself to extend the cantilever along its predefined path by

either placing in the rightmost column, or by extending into a new column. Be-

ginning with the location above the rightmost column (marked with an asterisk

in Fig. 1b), agents check each location in a clockwise order to find the first one

that does not extend beyond the desired path boundary, but is both empty and

will produce a contiguous structure. If the active agent believes the structure is

unstable, it calculates a probability distribution as described in [3] that repre-

sents the probability of placing in each column to provide reinforcement, where

columns with critical links are more likely to be chosen. The active agent draws

from this distribution without replacement and attempts to place at the bottom

of the chosen column, but can only do so if there is a placed agent to either side:

locations 1 and 2 in Fig. 1c are therefore valid, whereas location 3 is not. If an

invalid column is chosen, another column is chosen without replacement.

4 Results

We performed systematic trials on cantilevers with straight paths at a given

angle ✓ to the horizontal, as shown in Figs. 1a & 1b for negative and positive ✓
respectively. Trials were performed for linear paths with �80

�  ✓  80
�
in 10

�
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intervals, with the allowable M and F set to 13.9Nm and 579N respectively. A

total of 30 trials were performed for each ✓, each terminating when 40 agents

were placed.

The cantilevers are compared by their maximum Euclidean length, which

refers to the straight line distance from the upper right corner of the fixed support

to the tip along the surface path. Fig. 2a shows the average maximum length

reached for each ✓, and reveals a global minimum at ✓ = 30
�
, whereas one might

expect this to occur when building horizontally (✓ = 0
�
). A combination of

factors contributed to this result. In the absence of gravity, structures close to

✓ = ±45
�
consisting of a given number of agents are of the lowest Euclidean

length due to the discrete grid environment. The inclusion of gravity means

structures require reinforcement, which is more e�cient for negative ✓ as the

structure can form a buttress against the fixed support with fewer agents.

An e�cient cantilever will travel the furthest distance using the least possible

agents. Fig. 2b shows the e�ciency, a metric calculated as the Euclidean length

of a structure divided by number of agents it comprises. The plot shows that the

larger angles are capable of maintaining the highest e�ciency for a given Eu-

clidean length. The small angles are initially e�cient but exhibit a large decline

as ✓ increases, explained by the rapid increase in forces as the distance from the

fixed support increases. This analysis is irrespective of agent size.

5 Conclusion

This paper has shown how swarms of force-aware robots can self-assemble struc-

tures beyond those presented in literature. It proposes a distributed algorithm

by which robots build structures at a prescribed angle. Such angled structures

were analysed in detail; the same method was also shown to build structures

along a non-linear path. The structures produced did not collapse during con-

struction and could be chosen to follow a wide range of paths, increasing the

potential scenarios such robots could be deployed in.
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Abstract. This short paper presents the results of a final year project
carried out by a group of university students, wherein the design and pro-
totyping of a wearable robotic tail for enhancing human balance was in-
vestigated. The main goal of the research was to explore the two-degrees
of freedom kinematic configuration of the robotic tail and to determine
the power and actuation requirements involved. Through iterative ex-
perimentation, a prototype of the tail was successfully constructed and
tested. The prototype incorporates a two-link mechanism, which is af-
fixed to a user’s back for support. Cable-driven actuation and electric
motors are utilized at the ends of each mechanical link of the tail to
achieve the desired actuation.

Keywords: wearable robotics, balance control, human-robot interac-
tion

1 Introduction

Musculoskeletal injuries resulting from improper lifting techniques in various
work environments present significant challenges, both in terms of physical well-
being and economic costs [1]. Wearable robots can be used to support human
posture and balance during material handling tasks improving safety and e�-
ciency of the work [2]. Limited solutions for wearable robotic tails have been
proposed earlier [3–5] however, only one of the prototypes [4] was tested for
balancing support. Our previous simulation studies have demonstrated that it
is possible to use a wearable robotic tail attached to a user’s back to support
balancing tasks when handling heavy loads [6–8]. In this work we explored the de-
sign and prototyping of a wearable robotic tail that can support human posture
during heavy objects handling with a potential application with supernumerary
robotic limbs, as shown in Fig. 1a.

2 Mechanical Design of the Robotic Tail

The prototype consists of a flange designed to be fixed on a user’s back using a
commercially available back-frame support. It comprises two cable-driven rev-
olute joint units with ball-bearing units and pulley stacks for the cable-driven
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Fig. 1: a. Conceptual drawing of a robotic tail for human balancing support dur-
ing material handling with supernumerary robotic limbs. b. Kinematic scheme
of 2-DoF robotic tail and a simplified human balancing model. c. CAD of the
robotic tail prototype. Top-right: cable mechanism used for rotation transmis-
sion in the joints. d. Manufactured robotic tail worn by a user during the tests.
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mechanisms. Both revolute joint units are designed using similar 3D-printed
parts, ensuring modularity and simplified maintenance. The tail is mechanically
attached using three carbon fiber rods, with motors positioned at the second
(middle joint) and the tail’s end to achieve a distant center of mass. The lengths
of the tail’s links are 70 cm and 40 cm, respectively, and the total weight of the
robot does not exceed 7 kg.

To maintain balance and minimize the risk of backward falls, it was crucial
to ensure that the center of mass of the tail does not extend beyond 23 cm
from the user’s back in its passive configuration (vertically facing down). This
constraint maintains a balanced weight distribution and reduces the potential
moment around the user. The calculated torque for motor 1 is 0.625 N/m, and
for motor 2, it is 4 N/m, both of which fall within the maximum torque limits of
the selected brushless direct current actuators. The use of a high transmission
ratio in the cable drive system (20-30 times torque reduction depending on the
number of pulleys used) allows relatively low torque requirements. However, the
power requirements for the motors are relatively high to ensure the tail is fast
and reactive in counter-balancing tasks. The calculated power capacity for motor
1 is 573 W, and for motor 2, it is 262 W.

Fig. 1d depicts a user wearing the robotic tail during initial testing, attached
to an o↵-the-shelf wearable back support. In testing with a healthy adult male
user, the tail successfully supported its weight when positioned in a fixed con-
figuration. It was also demonstrated that the tail e↵ectively influenced human
posture, requiring the user to adjust their center of mass position to compensate
for the tail’s movement. This postural support will be crucial when testing the
tail in load-carrying tasks.

3 Conclusion

This paper presented a mechanical design and prototype manufacturing of a
wearable robotic tail that can be used to support human balance and posture
in material handling tasks. Several design aspects were discussed and potential
design and application challenges identified. The robotic tail was validated in
a test with a healthy adult male participant and it was demonstrated that the
reaction torques created by the tail movement are su�cient to influence a users
balance control.

One of the key challenges faced in this research is the power requirements of
the system. To ensure the tail can accelerate to the necessary balancing configu-
ration quickly, while accounting for human body dynamics and posture control,
a substantial amount of torque is needed. Currently, the system relies on exter-
nal power sources, which were not integrated into the tail’s design, presenting a
significant limitation.

For successful future applications of this robotic technology, it is essential
to consider a more compact design and a simplified mechanical configuration.
Addressing these aspects can lead to an improved and more e�cient wearable
robotic tail system.
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